Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 17(11): 703-721, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27649880

RESUMO

Topoisomerases introduce transient DNA breaks to relax supercoiled DNA, remove catenanes and enable chromosome segregation. Human cells encode six topoisomerases (TOP1, TOP1mt, TOP2α, TOP2ß, TOP3α and TOP3ß), which act on a broad range of DNA and RNA substrates at the nuclear and mitochondrial genomes. Their catalytic intermediates, the topoisomerase cleavage complexes (TOPcc), are therapeutic targets of various anticancer drugs. TOPcc can also form on damaged DNA during replication and transcription, and engage specific repair pathways, such as those mediated by tyrosyl-DNA phosphodiesterase 1 (TDP1) and TDP2 and by endonucleases (MRE11, XPF-ERCC1 and MUS81). Here, we review the roles of topoisomerases in mediating chromatin dynamics, transcription, replication, DNA damage repair and genomic stability, and discuss how deregulation of topoisomerases can cause neurodegenerative diseases, immune disorders and cancer.


Assuntos
Replicação do DNA , DNA Topoisomerases/fisiologia , Instabilidade Genômica , Transcrição Gênica , Animais , Dano ao DNA , Reparo do DNA , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/genética
2.
Mol Cell ; 75(2): 252-266.e8, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31202577

RESUMO

Topoisomerase II (TOP2) relieves torsional stress by forming transient cleavage complex intermediates (TOP2ccs) that contain TOP2-linked DNA breaks (DSBs). While TOP2ccs are normally reversible, they can be "trapped" by chemotherapeutic drugs such as etoposide and subsequently converted into irreversible TOP2-linked DSBs. Here, we have quantified etoposide-induced trapping of TOP2ccs, their conversion into irreversible TOP2-linked DSBs, and their processing during DNA repair genome-wide, as a function of time. We find that while TOP2 chromatin localization and trapping is independent of transcription, it requires pre-existing binding of cohesin to DNA. In contrast, the conversion of trapped TOP2ccs to irreversible DSBs during DNA repair is accelerated 2-fold at transcribed loci relative to non-transcribed loci. This conversion is dependent on proteasomal degradation and TDP2 phosphodiesterase activity. Quantitative modeling shows that only two features of pre-existing chromatin structure-namely, cohesin binding and transcriptional activity-can be used to predict the kinetics of TOP2-induced DSBs.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo II/química , DNA/genética , Complexos Multiproteicos/química , Proteínas de Ligação a Poli-ADP-Ribose/química , Quebra Cromossômica , Cromossomos/genética , DNA/química , Reparo do DNA/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Etoposídeo/química , Conversão Gênica/genética , Células HCT116 , Humanos , Cinética , Complexos Multiproteicos/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Torção Mecânica , Transcrição Gênica , Translocação Genética/genética
3.
Proc Natl Acad Sci U S A ; 120(34): e2218483120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579177

RESUMO

We designed and carried out a high-throughput screen for compounds that trap topoisomerase III beta (TOP3B poisons) by developing a Comparative Cellular Cytotoxicity Screen. We found a bisacridine compound NSC690634 and a thiacyanine compound NSC96932 that preferentially sensitize cell lines expressing TOP3B, indicating that they target TOP3B. These compounds trap TOP3B cleavage complex (TOP3Bcc) in cells and in vitro and predominately act on RNA, leading to high levels of RNA-TOP3Bccs. NSC690634 also leads to enhanced R-loops in a TOP3B-dependent manner. Preliminary structural activity studies show that the lengths of linkers between the two aromatic moieties in each compound are critical; altering the linker length completely abolishes the trapping of TOP3Bccs. Both of our lead compounds share a similar structural motif, which can serve as a base for further modification. They may also serve in anticancer, antiviral, and/or basic research applications.


Assuntos
DNA Topoisomerases Tipo I , Inibidores da Topoisomerase I , Linhagem Celular , DNA Topoisomerases Tipo I/metabolismo , RNA , Inibidores da Topoisomerase I/química
4.
Hum Mol Genet ; 32(15): 2422-2440, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37129502

RESUMO

The recognition that cytosolic mitochondrial DNA (mtDNA) activates cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) innate immune signaling has unlocked novel disease mechanisms. Here, an uncharacterized variant predicted to affect TOP1MT function, P193L, was discovered in a family with multiple early onset autoimmune diseases, including Systemic Lupus Erythematosus (SLE). Although there was no previous genetic association between TOP1MT and autoimmune disease, the role of TOP1MT as a regulator of mtDNA led us to investigate whether TOP1MT could mediate the release of mtDNA to the cytosol, where it could then activate the cGAS-STING innate immune pathway known to be activated in SLE and other autoimmune diseases. Through analysis of cells with reduced TOP1MT expression, we show that loss of TOP1MT results in release of mtDNA to the cytosol, which activates the cGAS-STING pathway. We also characterized the P193L variant for its ability to rescue several TOP1MT functions when expressed in TOP1MT knockout cells. We show that the P193L variant is not fully functional, as its re-expression at high levels was unable to rescue mitochondrial respiration deficits, and only showed partial rescue for other functions, including repletion of mtDNA replication following depletion, nucleoid size, steady state mtDNA transcripts levels and mitochondrial morphology. Additionally, expression of P193L at endogenous levels was unable to rescue mtDNA release-mediated cGAS-STING signaling. Overall, we report a link between TOP1MT and mtDNA release leading to cGAS-STING activation. Moreover, we show that the P193L variant has partial loss of function that may contribute to autoimmune disease susceptibility via cGAS-STING mediated activation of the innate immune system.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , DNA Mitocondrial/genética , Imunidade Inata/genética , Interferons , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
5.
EMBO J ; 36(3): 361-373, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27932446

RESUMO

Ribonuclease activity of topoisomerase I (Top1) causes DNA nicks bearing 2',3'-cyclic phosphates at ribonucleotide sites. Here, we provide genetic and biochemical evidence that DNA double-strand breaks (DSBs) can be directly generated by Top1 at sites of genomic ribonucleotides. We show that RNase H2-deficient yeast cells displayed elevated frequency of Rad52 foci, inactivation of RNase H2 and RAD52 led to synthetic lethality, and combined loss of RNase H2 and RAD51 induced slow growth and replication stress. Importantly, these phenotypes were rescued upon additional deletion of TOP1, implicating homologous recombination for the repair of Top1-induced damage at ribonuclelotide sites. We demonstrate biochemically that irreversible DSBs are generated by subsequent Top1 cleavage on the opposite strand from the Top1-induced DNA nicks at ribonucleotide sites. Analysis of Top1-linked DNA from pull-down experiments revealed that Top1 is covalently linked to the end of DNA in RNase H2-deficient yeast cells, supporting this model. Taken together, these results define Top1 as a source of DSBs and genome instability when ribonucleotides incorporated by the replicative polymerases are not removed by RNase H2.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo I/metabolismo , DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Deleção de Genes , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Ribonuclease H/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
6.
EMBO Rep ; 19(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29438979

RESUMO

Tyrosyl-DNA phosphodiesterase 2 (TDP2) repairs abortive topoisomerase II cleavage complexes. Here, we identify a novel short isoform of TDP2 (TDP2S) expressed from an alternative transcription start site. TDP2S contains a mitochondrial targeting sequence, contributing to its enrichment in the mitochondria and cytosol, while full-length TDP2 contains a nuclear localization signal and the ubiquitin-associated domain in the N-terminus. Our study reveals that both TDP2 isoforms are present and active in the mitochondria. Comparison of isogenic wild-type (WT) and TDP2 knockout (TDP2-/-/-) DT40 cells shows that TDP2-/-/- cells are hypersensitive to mitochondrial-targeted doxorubicin (mtDox), and that complementing TDP2-/-/- cells with human TDP2 restores resistance to mtDox. Furthermore, mtDox selectively depletes mitochondrial DNA in TDP2-/-/- cells. Using CRISPR-engineered human cells expressing only the TDP2S isoform, we show that TDP2S also protects human cells against mtDox. Finally, lack of TDP2 in the mitochondria reduces the mitochondria transcription levels in two different human cell lines. In addition to identifying a novel TDP2S isoform, our report demonstrates the presence and importance of both TDP2 isoforms in the mitochondria.


Assuntos
Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Processamento Alternativo/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/antagonistas & inibidores , Diester Fosfórico Hidrolases , Isoformas de Proteínas/genética , Fatores de Transcrição/antagonistas & inibidores
7.
Nucleic Acids Res ; 46(17): 8926-8939, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30113698

RESUMO

The Artemis nuclease and tyrosyl-DNA phosphodiesterase (TDP1) are each capable of resolving protruding 3'-phosphoglycolate (PG) termini of DNA double-strand breaks (DSBs). Consequently, both a knockout of Artemis and a knockout/knockdown of TDP1 rendered cells sensitive to the radiomimetic agent neocarzinostatin (NCS), which induces 3'-PG-terminated DSBs. Unexpectedly, however, a knockdown or knockout of TDP1 in Artemis-null cells did not confer any greater sensitivity than either deficiency alone, indicating a strict epistasis between TDP1 and Artemis. Moreover, a deficiency in Artemis, but not TDP1, resulted in a fraction of unrepaired DSBs, which were assessed as 53BP1 foci. Conversely, a deficiency in TDP1, but not Artemis, resulted in a dramatic increase in dicentric chromosomes following NCS treatment. An inhibitor of DNA-dependent protein kinase, a key regulator of the classical nonhomologous end joining (C-NHEJ) pathway sensitized cells to NCS, but eliminated the sensitizing effects of both TDP1 and Artemis deficiencies. These results suggest that TDP1 and Artemis perform different functions in the repair of terminally blocked DSBs by the C-NHEJ pathway, and that whereas an Artemis deficiency prevents end joining of some DSBs, a TDP1 deficiency tends to promote DSB mis-joining.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA/genética , Endonucleases/genética , Epistasia Genética , Proteínas Nucleares/genética , Diester Fosfórico Hidrolases/genética , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/farmacologia , DNA/química , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , Endonucleases/antagonistas & inibidores , Endonucleases/deficiência , Células HCT116 , Células HEK293 , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/deficiência , Inibidores da Síntese de Ácido Nucleico/farmacologia , Diester Fosfórico Hidrolases/deficiência , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Zinostatina/farmacologia
8.
Nucleic Acids Res ; 44(16): 7714-21, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27257064

RESUMO

Ribonucleotides are the most abundant non-canonical component of yeast genomic DNA and their persistence is associated with a distinctive mutation signature characterized by deletion of a single repeat unit from a short tandem repeat. These deletion events are dependent on DNA topoisomerase I (Top1) and are initiated by Top1 incision at the relevant ribonucleotide 3'-phosphodiester. A requirement for the re-ligation activity of Top1 led us to propose a sequential cleavage model for Top1-dependent mutagenesis at ribonucleotides. Here, we test key features of this model via parallel in vitro and in vivo analyses. We find that the distance between two Top1 cleavage sites determines the deletion size and that this distance is inversely related to the deletion frequency. Following the creation of a gap by two Top1 cleavage events, the tandem repeat provides complementarity that promotes realignment to a nick and subsequent Top1-mediated ligation. Complementarity downstream of the gap promotes deletion formation more effectively than does complementarity upstream of the gap, consistent with constraints to realignment of the strand to which Top1 is covalently bound. Our data fortify sequential Top1 cleavage as the mechanism for ribonucleotide-dependent deletions and provide new insight into the component steps of this process.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Ribonucleotídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Sequência de Bases , DNA/metabolismo , DNA Topoisomerases Tipo I/isolamento & purificação , Mutação da Fase de Leitura/genética , Sequências Repetitivas de Ácido Nucleico/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
9.
Proc Natl Acad Sci U S A ; 112(36): 11282-7, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26305952

RESUMO

The liver has an exceptional replicative capacity following partial hepatectomy or chemical injuries. Cellular proliferation requires increased production of energy and essential metabolites, which critically depend on the mitochondria. To determine whether Top1mt, the vertebrate mitochondrial topoisomerase, is involved in this process, we studied liver regeneration after carbon tetrachloride (CCl4) administration. TOP1mt knockout (KO) mice showed a marked reduction in regeneration and hepatocyte proliferation. The hepatic mitochondrial DNA (mtDNA) failed to increase during recovery from CCl4 exposure. Reduced glutathione was also depleted, indicating increased reactive oxygen species (ROS). Steady-state levels of ATP, O2 consumption, mtDNA, and mitochondrial mass were also reduced in primary hepatocytes from CCl4-treated KO mice. To further test whether Top1mt acted by enabling mtDNA regeneration, we tested TOP1mt KO fibroblasts and human colon carcinoma HCT116 cells and measured mtDNA after 3-d treatment with ethidium bromide. Both types of TOP1mt knockout cells showed defective mtDNA regeneration following mtDNA depletion. Our study demonstrates that Top1mt is required for normal mtDNA homeostasis and for linking mtDNA expansion with hepatocyte proliferation.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Hepatócitos/metabolismo , Regeneração Hepática/fisiologia , Mitocôndrias Hepáticas/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Tetracloreto de Carbono/toxicidade , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , DNA Topoisomerases Tipo I/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Glutationa/metabolismo , Células HCT116 , Hepatócitos/efeitos dos fármacos , Hepatócitos/ultraestrutura , Humanos , Regeneração Hepática/genética , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Zhonghua Yi Xue Za Zhi ; 97(8): 581-586, 2017 Feb 28.
Artigo em Zh | MEDLINE | ID: mdl-28260301

RESUMO

Objective: To identify human leukocyte antigen (HLA)-DRB1, DQA1 and DQB1 susceptible alleles and genotypes in latent autoimmune diabetes in adults (LADA) patients of Chinese Han nationality. Methods: All subjects including 652 LADA patients and 1 181 healthy controls from 1999 to 2015 in Han nationality region of Hunan province were genotyped with high resolution at HLA-DRB1, DQA1 and DQB1 locus by PCR-sequence based typing (PCR-SBT). Frequencies of genotypes between patients and controls were compared by chi square test. Results: The DQA1 susceptible allele was DQA1*03 (OR=1.23, P(c)=0.028); the DQB1 susceptible alleles were DQB1*0201 (OR=2.24, P(c)<0.001), DQB1*0303 (OR=1.30, P(c)=0.030), DQB1*0304 (OR=10.23, P(c)=0.004) and DQB1*0401(OR=1.94, P(c)<0.001); and the DRB1 susceptible alleles were DRB1*0301 (OR=2.10, P(c)<0.001), DRB1*0405(OR=1.89, P(c)<0.001) and DRB1*0901(OR=1.36, P(c)=0.008), respectively in Chinese Han nationality LADA patients. The HLA-Ⅱ susceptible genotypes were DQA1*03/05 (OR=1.81, P(c)=0.007), DQB1*0201/0201(OR=5.74, P(c)<0.001), DQB1*0201/0303 (OR=2.58, P(c)=0.010), DRB1*0301/0901(OR=3.43, P(c)=0.028) and DRB1*0901/0901 (OR=1.82, P(c)=0.021), respectively in LADA patients. DQB1*0201 and DRB1*0301 were shared susceptible alleles for Chinese Han and Caucasian LADA patients, while DQA1*03, DQB1*0303, DQB1*0304, DQB1*0401, DRB1*0405 and DRB1*0901 were specific susceptible alleles for Chinese Han LADA patients. Interestingly, the DQB1*0303 allele was susceptible in Chinese while protective in Caucasian (OR: 1.30 vs 0.29). Conclusion: Susceptible alleles are DQA1*03, DQB1*0201, DQB1*0303, DQB1*0304, DQB1*0401, DRB1*0301, DRB1*0405 and DRB1*0901, and susceptible genotypes are DQA1*03/05, DQB1*0201/0201, DQB1*0201/0303, DRB1*0301/0901 and DRB1*0901/0901 in Chinese LADA patients.


Assuntos
Alelos , Frequência do Gene , Diabetes Autoimune Latente em Adultos , Adulto , Povo Asiático , Diabetes Mellitus Tipo 1 , Predisposição Genética para Doença , Genótipo , Cadeias beta de HLA-DQ , Cadeias HLA-DRB1 , Humanos , População Branca
11.
Ultrasound Obstet Gynecol ; 47(4): 492-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25846712

RESUMO

OBJECTIVE: To evaluate the safety and efficiency of high-intensity focused ultrasound (HIFU) in the treatment of placenta accreta after vaginal delivery. METHODS: Enrolled into this study between September 2011 and September 2013 were 12 patients who had been diagnosed with placenta accreta following vaginal delivery and who had stable vital signs. All patients were treated using an ultrasound-guided HIFU treatment system. As indication of the effectiveness of the treatment we considered decreased vascular index on color Doppler imaging, decrease in size of residual placenta compared with pretreatment size on assessment by three-dimensional ultrasound with Virtual Organ Computer-aided Analysis, reduced signal intensity and degree of enhancement on magnetic resonance imaging and avoidance of hysterectomy following treatment. To assess the safety of HIFU treatment, we recorded side effects, hemorrhage, infection, sex steroid levels, return of menses and subsequent pregnancy. Patients were followed up in this preliminary study until December 2013. RESULTS: The 12 patients receiving HIFU treatment had an average postpartum hospital stay of 6.8 days and an average period of residual placental involution of 36.9 days. HIFU treatment did not apparently increase the risk of infection or hemorrhage and no patient required hysterectomy. In all patients menstruation recommenced after an average of 80.2 days, and sex steroid levels during the middle luteal phase of the second menstrual cycle were normal. Two patients became pregnant again during the follow-up period. CONCLUSION: This preliminary study suggests that ultrasound-guided HIFU is a safe and effective non-invasive method to treat placenta accreta patients after vaginal delivery who have stable vital signs and desire to preserve fertility. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Placenta Acreta/terapia , Ultrassonografia de Intervenção/métodos , Adulto , Parto Obstétrico/métodos , Feminino , Humanos , Placenta/diagnóstico por imagem , Placenta/cirurgia , Placenta Acreta/diagnóstico por imagem , Gravidez , Adulto Jovem
12.
Nucleic Acids Res ; 42(7): 4435-49, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24493735

RESUMO

Poly(ADP-ribose) polymerases (PARP) attach poly(ADP-ribose) (PAR) chains to various proteins including themselves and chromatin. Topoisomerase I (Top1) regulates DNA supercoiling and is the target of camptothecin and indenoisoquinoline anticancer drugs, as it forms Top1 cleavage complexes (Top1cc) that are trapped by the drugs. Endogenous and carcinogenic DNA lesions can also trap Top1cc. Tyrosyl-DNA phosphodiesterase 1 (TDP1), a key repair enzyme for trapped Top1cc, hydrolyzes the phosphodiester bond between the DNA 3'-end and the Top1 tyrosyl moiety. Alternative repair pathways for Top1cc involve endonuclease cleavage. However, it is unknown what determines the choice between TDP1 and the endonuclease repair pathways. Here we show that PARP1 plays a critical role in this process. By generating TDP1 and PARP1 double-knockout lymphoma chicken DT40 cells, we demonstrate that TDP1 and PARP1 are epistatic for the repair of Top1cc. The N-terminal domain of TDP1 directly binds the C-terminal domain of PARP1, and TDP1 is PARylated by PARP1. PARylation stabilizes TDP1 together with SUMOylation of TDP1. TDP1 PARylation enhances its recruitment to DNA damage sites without interfering with TDP1 catalytic activity. TDP1-PARP1 complexes, in turn recruit X-ray repair cross-complementing protein 1 (XRCC1). This work identifies PARP1 as a key component driving the repair of trapped Top1cc by TDP1.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Linhagem Celular Tumoral , DNA Topoisomerases Tipo I/metabolismo , Epistasia Genética , Humanos , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Domínios e Motivos de Interação entre Proteínas , Sumoilação , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
13.
Zhonghua Yi Xue Za Zhi ; 96(35): 2786-2790, 2016 Sep 20.
Artigo em Zh | MEDLINE | ID: mdl-27686543

RESUMO

Objective: To evaluate the clinical value of changes of maximum standardized uptake value (SUVmax) in series 18F-FDG PET/CT imaging before and after chemotherapy for non-small cell lung cancer. Methods: From July 2008 to July 2014, a total of 18 patients with pathological confirmed advanced NSCLC who received systemic chemotherapy were enrolled.18F-FDG PET/CT scans were performed before, 3-4 weeks after 2-4 cycles chemotherapy, 3-4 weeks after the end of chemotherapy for all patients, and added fourth scan for 3 patients 1 year later.The SUVmax of region of interesting was calculated.The histological diagnosis or clinical findings in a 36 months follow-up period served as the standard of control. Results: New metastases foci were found by 18F-FDG PET/CT scans before chemotherapy in 7 of 18 patients.The plans of chemotherapy for 5 patients were changed as therapeutic responses were evaluated according to changes of SUVmax.Targeted therapy was added for 2 patients after the end of chemotherapy.There was a statistically significant difference in outcome of survival analysis between patients performed PET/CT scans and non-performed (P<0.05). Conclusion: Changes of SUVmax in series 18F-FDG PET/CT imaging before and after chemotherapy could be used to evaluate therapeutic response and effectively predict survival in patients with advanced NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antineoplásicos , Fluordesoxiglucose F18 , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Análise de Sobrevida
14.
J Biol Chem ; 289(26): 18595-602, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24798329

RESUMO

Mitochondrial topoisomerase I (Top1mt) is a type IB topoisomerase present in vertebrates and exclusively targeted to mitochondria. Top1mt relaxes mitochondrial DNA (mtDNA) supercoiling by introducing transient cleavage complexes wherein the broken DNA strand swivels around the intact strand. Top1mt cleavage complexes (Top1mtcc) can be stabilized in vitro by camptothecin (CPT). However, CPT does not trap Top1mtcc efficiently in cells and is highly cytotoxic due to nuclear Top1 targeting. To map Top1mtcc on mtDNA in vivo and to overcome the limitations of CPT, we designed two substitutions (T546A and N550H) in Top1mt to stabilize Top1mtcc. We refer to the double-mutant enzyme as Top1mt*. Using retroviral transduction and ChIP-on-chip assays with Top1mt* in Top1mt knock-out murine embryonic fibroblasts, we demonstrate that Top1mt* forms high levels of cleavage complexes preferentially in the noncoding regulatory region of mtDNA, accumulating especially at the heavy strand replication origin OH, in the ribosomal genes (12S and 16S) and at the light strand replication origin OL. Expression of Top1mt* also caused rapid mtDNA depletion without affecting mitochondria mass, suggesting the existence of specific mitochondrial pathways for the removal of damaged mtDNA.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/enzimologia , Animais , Dano ao DNA , DNA Topoisomerases Tipo I/genética , DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Sequências Reguladoras de Ácido Nucleico
15.
J Biol Chem ; 289(26): 17960-9, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24808172

RESUMO

Eukaryotic type II topoisomerases (Top2α and Top2ß) are homodimeric enzymes; they are essential for altering DNA topology by the formation of normally transient double strand DNA cleavage. Anticancer drugs (etoposide, doxorubicin, and mitoxantrone) and also Top2 oxidation and DNA helical alterations cause potentially irreversible Top2·DNA cleavage complexes (Top2cc), leading to Top2-linked DNA breaks. Top2cc are the therapeutic mechanism for killing cancer cells. Yet Top2cc can also generate recombination, translocations, and apoptosis in normal cells. The Top2 protein-DNA covalent complexes are excised (in part) by tyrosyl-DNA-phosphodiesterase 2 (TDP2/TTRAP/EAP2/VPg unlinkase). In this study, we show that irreversible Top2cc induced in suicidal substrates are not processed by TDP2 unless they first undergo proteolytic processing or denaturation. We also demonstrate that TDP2 is most efficient when the DNA attached to the tyrosyl is in a single-stranded configuration and that TDP2 can efficiently remove a tyrosine linked to a single misincorporated ribonucleotide or to polyribonucleotides, which expands the TDP2 catalytic profile with RNA substrates. The 1.6-Å resolution crystal structure of TDP2 bound to a substrate bearing a 5'-ribonucleotide defines a mechanism through which RNA can be accommodated in the TDP2 active site, albeit in a strained conformation.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , DNA/metabolismo , Proteínas Nucleares/metabolismo , RNA/metabolismo , Fatores de Transcrição/metabolismo , Cristalografia por Raios X , DNA/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA , Humanos , Modelos Moleculares , Proteínas Nucleares/genética , Diester Fosfórico Hidrolases , Ligação Proteica , Proteólise , RNA/genética , Fatores de Transcrição/genética
16.
Br J Dermatol ; 173(3): 788-91, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25918821

RESUMO

Dirofilariasis is a worldwide zoonotic infection that accidentally affects humans. It is caused by filarial nematodes of the genus Dirofilaria, which are transmitted by mosquitoes. Cutaneous dirofilariasis appears as inflammatory lesions that could be consistent with Wells' cellulitis. We present a remarkable case of human infection with Dirofilaria repens, causing both subcutaneous and pulmonary nodules.


Assuntos
Dirofilariose/diagnóstico , Pneumopatias Parasitárias/diagnóstico , Dermatopatias Parasitárias/diagnóstico , Adulto , Animais , Dirofilaria repens/isolamento & purificação , Dirofilariose/parasitologia , Feminino , Humanos , Pneumopatias Parasitárias/parasitologia , Pele/parasitologia , Dermatopatias Parasitárias/parasitologia , Coxa da Perna
17.
Nucleic Acids Res ; 41(16): 7793-803, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23775789

RESUMO

Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl-DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs-acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)-we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3'-ends. We also show that Tdp1-/- cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1-/- cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs.


Assuntos
Antimetabólitos Antineoplásicos/toxicidade , Antivirais/toxicidade , Dano ao DNA , Reparo do DNA , Diester Fosfórico Hidrolases/metabolismo , Aciclovir/metabolismo , Aciclovir/toxicidade , Animais , Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/toxicidade , Antimetabólitos Antineoplásicos/metabolismo , Antivirais/metabolismo , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Células Cultivadas , Galinhas , Citarabina/metabolismo , Citarabina/toxicidade , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Deleção de Genes , Camundongos , Diester Fosfórico Hidrolases/genética , Zalcitabina/metabolismo , Zalcitabina/toxicidade , Zidovudina/metabolismo , Zidovudina/toxicidade
18.
Genet Mol Res ; 14(4): 17776-87, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26782423

RESUMO

We evaluated the associations between three common polymorphisms in the AGER gene and the risks of breast (BC) and lung (LC) cancer using meta-analysis. A systematic electronic search of the literature was conducted to identify all potential correlation studies in Embase, Web of Science, Cochrane Library, CINAHL, PubMed, CISCOM, China BioMedicine (CBM), and China National Knowledge Infrastructure (CNKI) databases. Five case-control studies that investigated the correlation of AGER gene polymorphisms with BC and LC were included in the meta-analysis, representing 4337 subjects. An increased frequency of the AGER rs1800625 T>C polymorphism was observed in patients with either BC or LC. We found that the frequencies of AGER rs1800624 T>A and rs2070600 G>A variants were positively related to the risks of BC and LC under allelic models, but that these relationships were not detected under dominant models. Disease-stratified results under allelic models demonstrated that the frequencies of the AGER rs1800625 T>C and rs2070600 G>A polymorphisms were positively correlated with the susceptibility to LC, while the same correlations were not found in BC. Further subgroup analysis by genotyping method indicated that the rs1800624 T>A variant was associated with increased risks of BC and LC under a dominant model in both non-polymerase chain reaction-restriction fragment length polymorphism (non-PCR-RFLP) and PCR-RFLP subgroups. In conclusion, these data indicated that common polymorphisms in the AGER gene might increase the risks of BC and LC.


Assuntos
Neoplasias da Mama/genética , Estudos de Associação Genética , Neoplasias Pulmonares/genética , Receptor para Produtos Finais de Glicação Avançada/genética , Alelos , Neoplasias da Mama/patologia , China , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Neoplasias Pulmonares/patologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco
19.
J Dent Res ; 103(5): 546-554, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38619065

RESUMO

The intricate formation of the palate involves a series of complex events, yet its mechanistic basis remains uncertain. To explore major cell populations in the palate and their roles during development, we constructed a spatiotemporal transcription landscape of palatal cells. Palate samples from C57BL/6 J mice at embryonic days 12.5 (E12.5), 14.5 (E14.5), and 16.5 (E16.5) underwent single-cell RNA sequencing (scRNA-seq) to identify distinct cell subsets. In addition, spatial enhanced resolution omics-sequencing (stereo-seq) was used to characterize the spatial distribution of these subsets. Integrating scRNA-seq and stereo-seq with CellTrek annotated mesenchymal and epithelial cellular components of the palate during development. Furthermore, cellular communication networks between these cell subpopulations were analyzed to discover intercellular signaling during palate development. From the analysis of the middle palate, both mesenchymal and epithelial populations were spatially segregated into 3 domains. The middle palate mesenchymal subpopulations were associated with tooth formation, ossification, and tissue remodeling, with initial state cell populations located proximal to the dental lamina. The nasal epithelium of the palatal shelf exhibited richer humoral immune responses than the oral side. Specific enrichment of Tgfß3 and Pthlh signals in the midline epithelial seam at E14.5 suggested a role in epithelial-mesenchymal transition. In summary, this study provides high-resolution transcriptomic information, contributing to a deeper mechanistic understanding of palate biology and pathophysiology.


Assuntos
Camundongos Endogâmicos C57BL , Palato , Animais , Camundongos , Palato/embriologia , Fator de Crescimento Transformador beta3/genética , Análise de Célula Única , Células Epiteliais , Análise de Sequência de RNA , Regulação da Expressão Gênica no Desenvolvimento , Feminino
20.
J Biol Chem ; 287(36): 30842-52, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22822062

RESUMO

TDP2 is a multifunctional enzyme previously known for its role in signal transduction as TRAF and TNF receptor-associated protein (TTRAP) and ETS1-associated protein 2 (EAPII). The gene has recently been renamed TDP2 because it plays a critical role for the repair of topoisomerase II cleavage complexes (Top2cc) and encodes an enzyme that hydrolyzes 5'-tyrosine-DNA adducts that mimic abortive Top2cc. Here we further elucidate the DNA-processing activities of human recombinant TDP2 and its biochemical characteristics. The preferred substrate for TDP2 is single-stranded DNA or duplex DNA with a four-base pair overhang, which is consistent with the known structure of Top2cc or Top3cc. The k(cat)/K(m) of TDP1 and TDP2 was determined. It was found to be 4 × 10(5) s(-1)M(-1) for TDP2 using single-stranded 5'-tyrosyl-DNA. The processing of substrates as short as five nucleotides long suggests that TDP2 can directly bind DNA ends. 5'-Phosphodiesterase activity requires a phosphotyrosyl linkage and tolerates an extended group attached to the tyrosine. TDP2 requires Mg(2+) or Mn(2+) for efficient catalysis but is weakly active with Ca(2+) or Zn(2+). Titration with Ca(2+) demonstrates a two-metal binding site in TDP2. Sequence alignment suggests that TDP2 contains four conserved catalytic motifs shared by Mg(2+)-dependent endonucleases, such as APE1. Substitutions at each of the four catalytic motifs identified key residues Asn-120, Glu-152, Asp-262, and His-351, whose mutation to alanine significantly reduced or completely abolished enzymatic activity. Our study characterizes the substrate specificity and kinetic parameters of TDP2. In addition, a two-metal catalytic mechanism is proposed.


Assuntos
Antígenos de Neoplasias/química , Adutos de DNA/química , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo I/química , Proteínas de Ligação a DNA/química , Magnésio/química , Manganês/química , Complexos Multienzimáticos/química , Proteínas Nucleares/química , Fatores de Transcrição/química , Motivos de Aminoácidos , Antígenos de Neoplasias/metabolismo , Sítios de Ligação , Cátions Bivalentes , Adutos de DNA/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Magnésio/metabolismo , Manganês/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas Nucleares/metabolismo , Diester Fosfórico Hidrolases , Especificidade por Substrato/fisiologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA