Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35112129

RESUMO

The tracheal epithelium is a primary target for pulmonary diseases as it provides a conduit for air flow between the environment and the lung lobes. The cellular and molecular mechanisms underlying airway epithelial cell proliferation and differentiation remain poorly understood. Hedgehog (HH) signaling orchestrates communication between epithelial and mesenchymal cells in the lung, where it modulates stromal cell proliferation, differentiation and signaling back to the epithelium. Here, we reveal a previously unreported autocrine function of HH signaling in airway epithelial cells. Epithelial cell depletion of the ligand sonic hedgehog (SHH) or its effector smoothened (SMO) causes defects in both epithelial cell proliferation and differentiation. In cultured primary human airway epithelial cells, HH signaling inhibition also hampers cell proliferation and differentiation. Epithelial HH function is mediated, at least in part, through transcriptional activation, as HH signaling inhibition leads to downregulation of cell type-specific transcription factor genes in both the mouse trachea and human airway epithelial cells. These results provide new insights into the role of HH signaling in epithelial cell proliferation and differentiation during airway development.


Assuntos
Comunicação Autócrina/fisiologia , Diferenciação Celular , Proliferação de Células , Proteínas Hedgehog/metabolismo , Transdução de Sinais/genética , Animais , Células Cultivadas , Regulação para Baixo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas Hedgehog/deficiência , Proteínas Hedgehog/genética , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Receptor Smoothened/deficiência , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Traqueia/citologia , Traqueia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36611253

RESUMO

Although previous studies have revealed that synonymous mutations contribute to various human diseases, distinguishing deleterious synonymous mutations from benign ones is still a challenge in medical genomics. Recently, computational tools have been introduced to predict the harmfulness of synonymous mutations. However, most of these computational tools rely on balanced training sets without considering abundant negative samples that could result in deficient performance. In this study, we propose a computational model that uses a selective ensemble to predict deleterious synonymous mutations (seDSM). We construct several candidate base classifiers for the ensemble using balanced training subsets randomly sampled from the imbalanced benchmark training sets. The diversity measures of the base classifiers are calculated by the pairwise diversity metrics, and the classifiers with the highest diversities are selected for integration using soft voting for synonymous mutation prediction. We also design two strategies for filling in missing values in the imbalanced dataset and constructing models using different pairwise diversity metrics. The experimental results show that a selective ensemble based on double fault with the ensemble strategy EKNNI for filling in missing values is the most effective scheme. Finally, using 40-dimensional biology features, we propose a novel model based on a selective ensemble for predicting deleterious synonymous mutations (seDSM). seDSM outperformed other state-of-the-art methods on the independent test sets according to multiple evaluation indicators, indicating that it has an outstanding predictive performance for deleterious synonymous mutations. We hope that seDSM will be useful for studying deleterious synonymous mutations and advancing our understanding of synonymous mutations. The source code of seDSM is freely accessible at https://github.com/xialab-ahu/seDSM.git.


Assuntos
Genômica , Mutação Silenciosa , Humanos , Genômica/métodos , Software , Algoritmos
3.
Respir Res ; 25(1): 353, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342154

RESUMO

BACKGROUND: In recent years, e-cigarettes have been used as alternatives among adult smokers. However, the impact of e-cigarette use on human bronchial epithelial (HBE) cells remains controversial. METHODS: We collected primary HBE cells of healthy nonsmokers and chronic obstructive pulmonary disease (COPD) smokers, and analyzed the impact of e- cigarette vapor extract (ECE) or cigarette smoke extract (CSE) on HBE cell differentiation and injury by single-cell RNA sequencing, immunostaining, HE staining, qPCR and ELISA. We obtained serum and sputum from healthy non- smokers, smokers and e-cigarette users, and analyzed cell injury markers and mucin proteins. RESULTS: ECE treatment led to a distinct differentiation program of ciliated cells and unique patterns of their cell-cell communications compared with CSE. ECE treatment caused increased Notch signaling strength in a ciliated cell subpopulation, and HBE cell remodeling and injury including hypoplasia of ciliated cells and club cells, and shorter cilia. ECE-induced hypoplasia of ciliated cells and shorter cilia were ameliorated by the Notch signaling inhibition. CONCLUSIONS: This study reveals distinct characteristics in e-cigarette vapor-induced airway epithelial remodeling, pointing to Notch signaling pathway as a potential targeted intervention for e-cigarette vapor-caused ciliated cell differentiation defects and cilia injury. In addition, a decrease in SCGB1A1 proteins is associated with e- cigarette users, indicating a potential lung injury marker for e-cigarette users.


Assuntos
Remodelação das Vias Aéreas , Vapor do Cigarro Eletrônico , Análise de Célula Única , Transcriptoma , Humanos , Vapor do Cigarro Eletrônico/toxicidade , Vapor do Cigarro Eletrônico/efeitos adversos , Transcriptoma/efeitos dos fármacos , Remodelação das Vias Aéreas/efeitos dos fármacos , Remodelação das Vias Aéreas/fisiologia , Análise de Célula Única/métodos , Masculino , Células Cultivadas , Feminino , Pessoa de Meia-Idade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Adulto , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Sistemas Eletrônicos de Liberação de Nicotina , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Brônquios/efeitos dos fármacos , Brônquios/patologia , Brônquios/metabolismo , Cílios/efeitos dos fármacos , Cílios/patologia , Cílios/metabolismo , Diferenciação Celular/efeitos dos fármacos
4.
Proc Natl Acad Sci U S A ; 116(51): 25697-25706, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31776260

RESUMO

Goblet cell metaplasia and mucus hypersecretion are observed in many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the regulation of goblet cell differentiation remains unclear. Here, we identify a regulator of this process in an N-ethyl-N-nitrosourea (ENU) screen for modulators of postnatal lung development; Ryk mutant mice exhibit lung inflammation, goblet cell hyperplasia, and mucus hypersecretion. RYK functions as a WNT coreceptor, and, in the developing lung, we observed high RYK expression in airway epithelial cells and moderate expression in mesenchymal cells as well as in alveolar epithelial cells. From transcriptomic analyses and follow-up studies, we found decreased WNT/ß-catenin signaling activity in the mutant lung epithelium. Epithelial-specific Ryk deletion causes goblet cell hyperplasia and mucus hypersecretion but not inflammation, while club cell-specific Ryk deletion in adult stages leads to goblet cell hyperplasia and mucus hypersecretion during regeneration. We also found that the airway epithelium of COPD patients often displays goblet cell metaplastic foci, as well as reduced RYK expression. Altogether, our findings reveal that RYK plays important roles in maintaining the balance between airway epithelial cell populations during development and repair, and that defects in RYK expression or function may contribute to the pathogenesis of human lung diseases.


Assuntos
Diferenciação Celular/fisiologia , Células Caliciformes , Pulmão , Receptores Proteína Tirosina Quinases/metabolismo , Via de Sinalização Wnt/fisiologia , Células A549 , Animais , Células Caliciformes/citologia , Células Caliciformes/metabolismo , Células Caliciformes/fisiologia , Humanos , Hiperplasia/metabolismo , Hiperplasia/patologia , Pulmão/citologia , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Camundongos , Muco/metabolismo , Pneumonia/metabolismo , Pneumonia/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , beta Catenina/metabolismo
5.
Eur Respir J ; 53(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578393

RESUMO

Epithelial tubes, comprised of polarised epithelial cells around a lumen, are crucial for organ function. However, the molecular mechanisms underlying tube formation remain largely unknown. Here, we report on the function of fibrillin (FBN)2, an extracellular matrix (ECM) glycoprotein, as a critical regulator of tracheal tube formation.We performed a large-scale forward genetic screen in mouse to identify regulators of respiratory organ development and disease. We identified Fbn2 mutants which exhibit shorter and narrowed tracheas as well as defects in tracheal smooth muscle cell alignment and polarity.We found that FBN2 is essential for elastic fibre formation and Fibronectin accumulation around tracheal smooth muscle cells. These processes appear to be regulated at least in part through inhibition of p38-mediated upregulation of matrix metalloproteinases (MMPs), as pharmacological decrease of p38 phosphorylation or MMP activity partially attenuated the Fbn2 mutant tracheal phenotypes. Analysis of human tracheal tissues indicates that a decrease in ECM proteins, including FBN2 and Fibronectin, is associated with tracheomalacia.Our findings provide novel insights into the role of ECM homeostasis in mesenchymal cell polarisation during tracheal tubulogenesis.


Assuntos
Matriz Extracelular/metabolismo , Fibrilina-2/metabolismo , Músculo Liso/embriologia , Miócitos de Músculo Liso/citologia , Traqueia/embriologia , Animais , Embrião de Mamíferos , Feminino , Fibrilina-2/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso/citologia , Fenótipo , Fosforilação , Transdução de Sinais , Traqueia/citologia
6.
J Org Chem ; 83(17): 10602-10612, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30067907

RESUMO

The transition-metal-free synthesis of unsymmetrical and highly functionalized triarylmethanes through arylation of the situ generated o-QMs from diarylmethyl p-tolyl sulfones with aryl zinc reagents is described. Alkyl zinc reagents are also well tolerated in this reaction. Additionally, the straightforward synthesis of the analogue of the antituberculosis agent A and the key precursor of the anti-breast-cancer agent B are achieved by this strategy.


Assuntos
Antibacterianos/química , Hidrocarbonetos Aromáticos/química , Sulfonas/química , Zinco/química , Alquilação , Catálise , Indicadores e Reagentes/química
7.
Front Immunol ; 15: 1445372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39206196

RESUMO

Macrophages in the innate immune system play a vital role in various lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), acute lung injury and pulmonary fibrosis. Macrophages involved in the process of immunity need to go through a process of activation, including changes in gene expression and cell metabolism. Epigenetic modifications are key factors of macrophage activation including DNA methylation, histone modification and non-coding RNA regulation. Understanding the role and mechanisms of epigenetic regulation of macrophage activation can provide insights into the function of macrophages in lung diseases and help identification of potential therapeutic targets. This review summarizes the latest progress in the epigenetic changes and regulation of macrophages in their development process and in normal physiological states, and the epigenetic regulation of macrophages in COPD as well as the influence of macrophage activation on COPD development.


Assuntos
Metilação de DNA , Epigênese Genética , Ativação de Macrófagos , Macrófagos , Doença Pulmonar Obstrutiva Crônica , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/genética , Humanos , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Animais , Macrófagos/imunologia , Macrófagos/metabolismo
8.
Adv Sci (Weinh) ; : e2308622, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360593

RESUMO

Abnormalities of tracheal smooth muscle (SM) formation are associated with several clinical disorders including tracheal stenosis and tracheomalacia. However, the cellular and molecular mechanisms underlying tracheal SM formation remain poorly understood. Here, it is shown that the T-type calcium channel CACNA1H is a novel regulator of tracheal SM formation and contraction. Cacna1h in an ethylnitrosourea forward genetic screen for regulators of respiratory disease using the mouse as a model is identified. Cacna1h mutants exhibit tracheal stenosis, disorganized SM and compromised tracheal contraction. CACNA1H is essential to maintain actin polymerization, which is required for tracheal SM organization and tube formation. This process appears to be partially mediated through activation of the actin regulator RhoA, as pharmacological increase of RhoA activity ameliorates the Cacna1h-mutant trachea phenotypes. Analysis of human tracheal tissues indicates that a decrease in CACNA1H protein levels is associated with congenital tracheostenosis. These results provide insight into the role for the T-type calcium channel in cytoskeletal organization and SM formation during tracheal tube formation and suggest novel targets for congenital tracheostenosis intervention.

9.
Hepatology ; 55(6): 1985-93, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22213104

RESUMO

UNLABELLED: Sorting nexin (SNX) family proteins are best characterized for their abilities to regulate protein trafficking during processes such as endocytosis of membrane receptors, endosomal sorting, and protein degradation, but their in vivo functions remain largely unknown. We started to investigate the biological functions of SNXs using the zebrafish model. In this study, we demonstrated that SNX7 was essential for embryonic liver development. Hepatoblasts were specified normally, and the proliferation of these cells was not affected when SNX7 was knocked down by gene-specific morpholinos; however, they underwent massive apoptosis during the early budding stage. SNX7 mainly regulated the survival of cells in the embryonic liver and did not affect the viability of cells in other endoderm-derived organs. We further demonstrated that down-regulation of SNX7 by short interfering RNAs induced apoptosis in cell culture. At the molecular level, the cellular FLICE-like inhibitory protein (c-FLIP)/caspase 8 pathway was activated when SNX7 was down-regulated. Furthermore, overexpression of c-FLIP(S) was able to rescue the SNX7 knockdown-induced liver defect. CONCLUSION: SNX7 is a liver-enriched antiapoptotic protein that is indispensable for the survival of hepatoblasts during zebrafish early embryogenesis.


Assuntos
Apoptose , Fígado/embriologia , Nexinas de Classificação/fisiologia , Peixe-Zebra/embriologia , Animais , Caspase 8/fisiologia , Proliferação de Células , Sobrevivência Celular , Nexinas de Classificação/genética
10.
Bio Protoc ; 13(13): e4711, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37449041

RESUMO

The trachea tube is the exclusive route to allow gas exchange between the external environment and the lungs. Recent studies have shown the critical role of mesenchymal cells in tracheal tubulogenesis. Improved methods for studying the dynamics of the tracheal mesenchyme development are needed to investigate the cellular and molecular mechanisms during tracheal tubulogenesis. Here, we describe a detailed protocol for a systematic analysis of tracheal tube development to enable observing tracheal smooth muscle (SM) and cartilage ring formation. We describe immunostaining, confocal and stereomicroscopy imaging, and quantitative methods to study the process of tracheal SM and cartilage ring development, including SM cell alignment, polarization, and changes in cell shape as well as mesenchymal condensation. The technologies and approaches described here not only improve analysis of the patterning of the developing trachea but also help uncover the mechanisms underlying airway disease. This protocol also provides a useful technique to analyze cell organization, polarity, and nuclear shape in other organ systems.

11.
J Inflamm Res ; 16: 3853-3870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671130

RESUMO

Background: The role of irreversible airway inflammatory damage in chronic obstructive pulmonary disease (COPD) progression is evident. Autophagy is an essential process in the cellular material metabolic cycle, and a family of resistant vegetative molecules may be involved in the COPD autophagic process. In this study, we investigated the mechanism of resistin-like molecule ß (RELMß) in COPD smoking-induced autophagy. Methods: Firstly, the expression differences of RELMß and autophagy markers between COPD and control groups were analyzed in the Gene Expression Omnibus (GEO) datasets and clinical specimens. Secondly, in vitro and in vivo experiments were conducted using immunoblotting, immunofluorescence, immunohistochemistry, and other methods to investigate the mechanism by which RELMß promotes airway inflammation through autophagy in a cigarette smoke extract-induced 16HBE cell inflammation model and a cigarette smoke-induced COPD-like mouse model. In addition, immunoprecipitation was used to analyze the binding of RELMß to the membrane protein TLR4. Results: The expression of RELMß and autophagy genes p62 and LC3B in lung tissue of COPD patients was significantly increased. RELMß can mediate the activation of autophagy in 16HBE cells, and through autophagy, it increases the expression of inflammatory cytokines in a cigarette smoke extract-induced 16HBE cell inflammation model. RELMß promotes cigarette smoke-induced COPD-like mouse airway inflammation through autophagy, and RELMß can mediate signal transduction through the cell membrane receptor TLR4. Conclusion: The RELMß binds to TLR4 to encourage signal transduction and that RELMß can promote inflammation in smoky COPD lungs through autophagy.

12.
Signal Transduct Target Ther ; 8(1): 108, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894537

RESUMO

Cardiopulmonary complications are major drivers of mortality caused by the SARS-CoV-2 virus. Interleukin-18, an inflammasome-induced cytokine, has emerged as a novel mediator of cardiopulmonary pathologies but its regulation via SARS-CoV-2 signaling remains unknown. Based on a screening panel, IL-18 was identified amongst 19 cytokines to stratify mortality and hospitalization burden in patients hospitalized with COVID-19. Supporting clinical data, administration of SARS-CoV-2 Spike 1 (S1) glycoprotein or receptor-binding domain (RBD) proteins into human angiotensin-converting enzyme 2 (hACE2) transgenic mice induced cardiac fibrosis and dysfunction associated with higher NF-κB phosphorylation (pNF-κB) and cardiopulmonary-derived IL-18 and NLRP3 expression. IL-18 inhibition via IL-18BP resulted in decreased cardiac pNF-κB and improved cardiac fibrosis and dysfunction in S1- or RBD-exposed hACE2 mice. Through in vivo and in vitro work, both S1 and RBD proteins induced NLRP3 inflammasome and IL-18 expression by inhibiting mitophagy and increasing mitochondrial reactive oxygenation species. Enhancing mitophagy prevented Spike protein-mediated IL-18 expression. Moreover, IL-18 inhibition reduced Spike protein-mediated pNF-κB and EC permeability. Overall, the link between reduced mitophagy and inflammasome activation represents a novel mechanism during COVID-19 pathogenesis and suggests IL-18 and mitophagy as potential therapeutic targets.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Camundongos , Animais , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , COVID-19/genética , Inflamassomos/genética , Inflamassomos/metabolismo , Interleucina-18/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mitofagia/genética , Inflamação/genética , Inflamação/metabolismo , Citocinas
13.
Clin Transl Med ; 12(1): e711, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35083881

RESUMO

Treatments for pulmonary fibrosis (PF) are ineffective because its molecular pathogenesis and therapeutic targets are unclear. Here, we show that the expression of low-density lipoprotein receptor (LDLR) was significantly decreased in alveolar type II (ATII) and fibroblast cells, whereas it was increased in endothelial cells from systemic sclerosis-related PF (SSc-PF) patients and idiopathic PF (IPF) patients compared with healthy controls. However, the plasma levels of low-density lipoprotein (LDL) increased in SSc-PF and IPF patients. The disrupted LDL-LDLR metabolism was also observed in four mouse PF models. Upon bleomycin (BLM) treatment, Ldlr-deficient (Ldlr-/-) mice exhibited remarkably higher LDL levels, abundant apoptosis, increased fibroblast-like endothelial and ATII cells and significantly earlier and more severe fibrotic response compared to wild-type mice. In vitro experiments revealed that apoptosis and TGF-ß1 production were induced by LDL, while fibroblast-like cell accumulation and ET-1 expression were induced by LDLR knockdown. Treatment of fibroblasts with LDL or culture medium derived from LDL-pretreated endothelial or epithelial cells led to obvious fibrotic responses in vitro. Similar results were observed after LDLR knockdown operation. These results suggest that disturbed LDL-LDLR metabolism contributes in various ways to the malfunction of endothelial and epithelial cells, and fibroblasts during pulmonary fibrogenesis. In addition, pharmacological restoration of LDLR levels by using a combination of atorvastatin and alirocumab inhibited BLM-induced LDL elevation, apoptosis, fibroblast-like cell accumulation and mitigated PF in mice. Therefore, LDL-LDLR may serve as an important mediator in PF, and LDLR enhancing strategies may have beneficial effects on PF.


Assuntos
Lipoproteínas LDL/genética , Fibrose Pulmonar/etiologia , Receptores de LDL/metabolismo , Animais , Modelos Animais de Doenças , Lipoproteínas LDL/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL/genética , Camundongos Endogâmicos C57BL/metabolismo , Fibrose Pulmonar/genética
14.
ERJ Open Res ; 7(2)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33829055

RESUMO

Severe COVID-19 patient airways plugged by MUC5AC-containing mucus exhibit hyperplasia of goblet cells, and hypoplasia of multiciliated cells and club cells, as well as significantly reduced CC16 and MUC5B levels, and increased IL-13 levels https://bit.ly/2M2NcdO.

15.
Cell Discov ; 7(1): 65, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385423

RESUMO

The current COVID-19 pandemic, caused by SARS-CoV-2, poses a serious public health threat. Effective therapeutic and prophylactic treatments are urgently needed. Angiotensin-converting enzyme 2 (ACE2) is a functional receptor for SARS-CoV-2, which binds to the receptor binding domain (RBD) of SARS-CoV-2 spike protein. Here, we developed recombinant human ACE2-Fc fusion protein (hACE2-Fc) and a hACE2-Fc mutant with reduced catalytic activity. hACE2-Fc and the hACE2-Fc mutant both efficiently blocked entry of SARS-CoV-2, SARS-CoV, and HCoV-NL63 into hACE2-expressing cells and inhibited SARS-CoV-2 S protein-mediated cell-cell fusion. hACE2-Fc also neutralized various SARS-CoV-2 strains with enhanced infectivity including D614G and V367F mutations, as well as the emerging SARS-CoV-2 variants, B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.1 (Kappa), and B.1.617.2 (Delta), demonstrating its potent and broad-spectrum antiviral effects. In addition, hACE2-Fc proteins protected HBE from SARS-CoV-2 infection. Unlike RBD-targeting neutralizing antibodies, hACE2-Fc treatment did not induce the development of escape mutants. Furthermore, both prophylactic and therapeutic hACE2-Fc treatments effectively protected mice from SARS-CoV-2 infection, as determined by reduced viral replication, weight loss, histological changes, and inflammation in the lungs. The protection provided by hACE2 showed obvious dose-dependent efficacy in vivo. Pharmacokinetic data indicated that hACE2-Fc has a relative long half-life in vivo compared to soluble ACE2, which makes it an excellent candidate for prophylaxis and therapy for COVID-19 as well as for SARS-CoV and HCoV-NL63 infections.

16.
Front Cell Dev Biol ; 8: 595488, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33251221

RESUMO

Cardiovascular disease is a serious threat to human health and a leading cause of mortality worldwide. Recent years have witnessed exciting progress in the understanding of heart formation and development, enabling cardiac biologists to make significant advance in the field of therapeutic heart regeneration. Most of our understanding of heart development and regeneration, including the genes and signaling pathways, are driven by pioneering works in non-mammalian model organisms, such as fruit fly, fish, frog, and chicken. Compared to mammalian animal models, non-mammalian model organisms have special advantages in high-throughput applications such as disease modeling, drug discovery, and cardiotoxicity screening. Genetically engineered animals of cardiovascular diseases provide valuable tools to investigate the molecular and cellular mechanisms of pathogenesis and to evaluate therapeutic strategies. A large number of congenital heart diseases (CHDs) non-mammalian models have been established and tested for the genes and signaling pathways involved in the diseases. Here, we reviewed the mechanisms of heart development and regeneration revealed by these models, highlighting the advantages of non-mammalian models as tools for cardiac research. The knowledge from these animal models will facilitate therapeutic discoveries and ultimately serve to accelerate translational medicine.

17.
J Thorac Dis ; 12(5): 1811-1823, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32642086

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) has been a global pandemic disease, with more than 4 million cases and nearly 300,000 deaths. Little is known about COVID-19 in patients with chronic obstructive pulmonary disease (COPD). We aimed to evaluate the influence of preexisting COPD on the progress and outcomes of COVID-19. METHODS: This was a multicenter, retrospective, observational study. We enrolled 1,048 patients aged 40 years and above, including 50 patients with COPD and 998 patients without COPD, and with COVID-19 confirmed via high-throughput sequencing or real-time reverse transcription-polymerase chain reaction, between December 11, 2019 and February 20, 2020. We collected data of demographics, pathologic test results, radiologic imaging, and treatments. The primary outcomes were composite endpoints determined by admission to an intensive care unit, the use of mechanical ventilation, or death. RESULTS: Compared with patients who had COVID-19 but not COPD, those with COPD had higher rates of fatigue (56.0% vs. 40.2%), dyspnea (66.0% vs. 26.3%), diarrhea (16.0% vs. 3.6%), and unconsciousness (8.0% vs. 1.7%) and a significantly higher proportion of increased activated partial thromboplastin time (23.5% vs. 5.2%) and D-dimer (65.9% vs. 29.3%), as well as ground-glass opacities (77.6% vs. 60.3%), local patchy shadowing (61.2% vs. 41.4%), and interstitial abnormalities (51.0% vs. 19.8%) on chest computed tomography. Patients with COPD were more likely to develop bacterial or fungal coinfection (20.0% vs. 5.9%), acute respiratory distress syndrome (ARDS) (20.0% vs. 7.3%), septic shock (14.0% vs. 2.3%), or acute renal failure (12.0% vs. 1.3%). Patients with COPD and COVID-19 had a higher risk of reaching the composite endpoints [hazard ratio (HR): 2.17, 95% confidence interval (CI): 1.40-3.38; P=0.001] or death (HR: 2.28, 95% CI: 1.15-4.51; P=0.019), after adjustment. CONCLUSIONS: In this study, patients with COPD who developed COVID-19 showed a higher risk of admission to the intensive care unit, mechanical ventilation, or death.

18.
Zhongguo Zhong Yao Za Zhi ; 34(22): 2946-9, 2009 Nov.
Artigo em Zh | MEDLINE | ID: mdl-20209967

RESUMO

OBJECTIVE: To establish a SPE-HPLC method for the determination and pharmacokinetic study of evodiamine and rutacarpine in rat plasma. METHOD: A Kromasil C18 column (4.6 mm x 250 mm, 5 microm) was used with acetonitrile-water-tetrahydrofuran-acetic acid (51:48:1:0.1) as a mobile phase and at a flow rate of 1 mL x min(-1), and the UV detection was at 225 nm. The column temperature was 35 degrees C. After the analytes were extracted from the plasma of rats by solid phase extraction (SPE), the content of evodiamine and rutaecarpine was measuared by HPLC method using halcinonide as an internal standard solution. RESULT: After transdermal administration to rats, the pharmacokinetic behavior of evodiamine and rutaecarpine belongs to the one-compartment model. The main pharmacokinetic parameters was as follows: K(a) 0.224 h(-1) and 0.220 h(-1), K(e) 0.114 h(-1) and 0.118 h(-1), C(max) 0.211 mg x L(-1) and 0.272 mg x L(-1), T(peak) 6.132 h and 6.102 h, respectively. CONCLUSION: The method in this study is simple, rapid and sensitive. It is proved to be suitable for pharmacokinetic study of evodiamine and rutaecarpine.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Alcaloides Indólicos/sangue , Extratos Vegetais/sangue , Quinazolinas/sangue , Extração em Fase Sólida/métodos , Animais , Medicamentos de Ervas Chinesas/farmacocinética , Alcaloides Indólicos/farmacocinética , Masculino , Extratos Vegetais/farmacocinética , Quinazolinas/farmacocinética , Ratos , Ratos Sprague-Dawley
19.
Cells ; 8(11)2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671755

RESUMO

Centriolar satellites are non-membrane cytoplasmic granules that deliver proteins to centrosome during centrosome biogenesis and ciliogenesis. Centriolar satellites are highly dynamic during cell cycle or ciliogenesis and how they are regulated remains largely unknown. We report here that sorting nexin 17 (SNX17) regulates the homeostasis of a subset of centriolar satellite proteins including PCM1, CEP131, and OFD1 during serum-starvation-induced ciliogenesis. Mechanistically, SNX17 recruits the deubiquitinating enzyme USP9X to antagonize the mindbomb 1 (MIB1)-induced ubiquitination and degradation of PCM1. SNX17 deficiency leads to enhanced degradation of USP9X as well as PCM1 and disrupts ciliogenesis upon serum starvation. On the other hand, SNX17 is dispensable for the homeostasis of PCM1 and USP9X in serum-containing media. These findings reveal a SNX17/USP9X mediated pathway essential for the homeostasis of centriolar satellites under serum starvation, and provide insight into the mechanism of USP9X in ciliogenesis, which may lead to a better understating of USP9X-deficiency-related human diseases such as X-linked mental retardation and neurodegenerative diseases.


Assuntos
Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cílios/fisiologia , Meios de Cultura Livres de Soro/farmacologia , Nexinas de Classificação/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Diferenciação Celular/genética , Células Cultivadas , Cílios/efeitos dos fármacos , Meios de Cultura Livres de Soro/química , Células HEK293 , Humanos , Ligação Proteica , Processamento de Proteína Pós-Traducional/genética , Proteólise , Nexinas de Classificação/genética , Ubiquitina Tiolesterase/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
20.
Nat Commun ; 9(1): 2815, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30022023

RESUMO

Tubulogenesis is essential for the formation and function of internal organs. One such organ is the trachea, which allows gas exchange between the external environment and the lungs. However, the cellular and molecular mechanisms underlying tracheal tube development remain poorly understood. Here, we show that the potassium channel KCNJ13 is a critical modulator of tracheal tubulogenesis. We identify Kcnj13 in an ethylnitrosourea forward genetic screen for regulators of mouse respiratory organ development. Kcnj13 mutants exhibit a shorter trachea as well as defective smooth muscle (SM) cell alignment and polarity. KCNJ13 is essential to maintain ion homeostasis in tracheal SM cells, which is required for actin polymerization. This process appears to be mediated, at least in part, through activation of the actin regulator AKT, as pharmacological increase of AKT phosphorylation ameliorates the Kcnj13-mutant trachea phenotypes. These results provide insight into the role of ion homeostasis in cytoskeletal organization during tubulogenesis.


Assuntos
Morfogênese/genética , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Proteínas Proto-Oncogênicas c-akt/genética , Traqueia/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Polaridade Celular , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Transporte de Íons , Camundongos Knockout , Músculo Liso/citologia , Miócitos de Músculo Liso/citologia , Fosforilação , Polimerização , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Traqueia/citologia , Traqueia/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA