Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Anal Chem ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994642

RESUMO

The properties of surface plasmons are notoriously dependent on the supporting materials system. However, new capabilities cannot be obtained until the technique of surface plasmon enabled by advanced two-dimensional materials is well understood. Herein, we present the experimental demonstration of surface plasmon polaritons (SPPs) supported by single-layered MXene flakes (Ti3C2Tx) coating on an optical microfiber and its application as an ammonia gas sensor. Enabled by its high controllability of chemical composition, unique atomistically thin layered structure, and metallic-level conductivity, MXene is capable of supporting not only plasmon resonances across a wide range of wavelengths but also a selective sensing mechanism through frequency modulation. Theoretical modeling and optics experiments reveal that, upon adsorbing ammonia molecules, the free electron motion at the interface between the SiO2 microfiber and the MXene coating is modulated (i.e., the modulation of the SPPs under applied light), thus inducing a variation in the evanescent field. Consequently, a wavelength shift is produced, effectively realizing a selective and highly sensitive ammonia sensor with a 100 ppm detection limit. The MXene supported SPPs open a promising path for the application of advanced optical techniques toward gas and chemical analysis.

2.
Anal Chem ; 96(24): 9842-9848, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38833511

RESUMO

A compact spectrometer based on a mid-infrared optical sensor has been developed for high-precision and real-time measurement of water isotope ratios. The instrument uses laser absorption spectroscopy and applies the weighted Kalman filtering method to determine water isotope ratios with high precision and fast time response. The precision of the measurements is 0.41‰ for δ18O and 0.29‰ for δ17O with a 1 s time. This is much faster than the standard running average technique, which takes over 90 s to achieve the same level of precision. The successful development of this compact mid-infrared optical sensor opens up new possibilities for its future applications in atmospheric and breath gas research.

3.
Opt Express ; 32(2): 1108-1122, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297670

RESUMO

Passive demodulation scheme using 3 × 3 coupler has been widely used in phase-sensitive optical time-domain reflectometry (φ-OTDR), interrogation of fiber Bragg gratings or fiber optic interferometric sensors, and sensor multiplexing. However, the asymmetry of the 3 × 3 coupler in real applications affects the demodulation performance seriously. We proposed an ameliorated 3 × 3 coupler-based demodulation algorithm using iteratively reweighted ellipse specific fitting (IRESF) to overcome the drawback. IRESF combines iterative reweight technology with ellipse specific fitting, which decreases the weights of high noise points and always outputs ellipse solutions. Any two output signals from the 3 × 3 coupler-based interferometer are fitted by the IRESF and then corrected as a pair of quadrature signals. The stability of the fitting parameters is utilized to resolve the failures of IRESF under small signals. A real-time 1/4 ellipse arc judging module is designed, if the Lissajous figure is larger than 1/4 ellipse arc, IRESF is executed to offer ellipse correction parameters. Otherwise, the fixed parameters preset in the algorithm are used. The fixed parameters are mean values of the fitting parameters of IRESF under a large stimulus. The desired phase signal is finally extracted from the corrected quadrature signals. Experimental results show that the ameliorated algorithm does not require strict symmetry of the 3 × 3 coupler and can work under small signals. The noise floor of the proposed algorithm is -112 dB re rad/√Hz and the demodulated amplitude is 23.15 dB (14.37 rad) at 1 kHz when THD is 0.0488%. Moreover, the response linearity is as high as 99.999%. Compared to the algorithm using direct least squares, the proposed demodulation algorithm is more robust and precise, which has broad application prospects.

4.
Opt Lett ; 49(8): 1888-1891, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621031

RESUMO

A phase generated carrier (PGC) demodulation scheme is always accompanied by nonlinear errors. We propose a fusion of PGC differential and cross multiplying (PGC-DCM), geometric fitting, and arctangent (Atan) algorithms for fiber optic interferometric sensors to eliminate nonlinear errors. The output amplitude of the PGC-DCM algorithm is used to judge whether the Lissajous figure of quadrature signals is larger than 1/2 ellipse arc. When the Lissajous figure exceeds 1/2 ellipse arc, the contaminated quadrature signals are corrected by the ellipse correction parameters calculated from the geometric fitting; otherwise, the previous fitting parameters are employed for correction. Geometric fitting is realized by minimizing the Sampson error, and its failure problem under small signals is solved by using the temporary stability of fitting results. Finally, desired signals are extracted from the corrected quadrature signals by the Atan algorithm. Experimental results show that the fusion combines the merits of the three algorithms and expands the application of the geometric fitting in PGC demodulation schemes.

5.
Opt Lett ; 49(14): 3950-3953, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008748

RESUMO

A 3 × 3 coupler multiphase demodulation scheme is proposed to eliminate the impact of working point drifting and the laser relative intensity noise (RIN) on a 3 × 3 coupler interferometric system. An ellipse-fitting algorithm (EFA) is applied to fit the two interference signals of the 3 × 3 coupler in order, then the ATAN algorithm is applied to obtain three noise-containing signals with specific trigonometric relationships. By averaging the three signals, the demodulated phase noise induced from RIN can be effectively eliminated. The experimental results show that compared with the asymmetric demodulation scheme without intensity noise control, the noise floor of the proposed scheme decreases from 4.5 to 1 µrad/√Hz at 1 kHz and 2.7 to 0.8 µrad/√Hz at 3 kHz. At high frequencies, the average noise floor level is reduced from 10 to 0.9 µrad/√Hz, a reduction of about 21 dB. Furthermore, the variation range of the average noise floor is reduced from 5.4 to 0.17 µrad /√Hz within 100 s.

6.
Appl Opt ; 63(13): 3695-3701, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856556

RESUMO

Ellipse fitting algorithms (EFAs) have been widely used in 3×3 coupler demodulation systems to reduce the requirement for symmetry of the 3×3 couplers. Based on the relative stability of the splitting ratio and phase difference after the establishment of the 3×3 coupler demodulation system, we solve the problem that EFA fails to work when the stimulating signal is small. Depending on the existence of a symmetry point about the origin, an additional phase shift judgment module is used to determine whether the Lissajous figure is larger than π rad. If the elliptical arc exceeds π rad, the EFA is executed. Otherwise, the previous parameters are used to correct the ellipse. Parameters are updated in real time to ensure high precision. The experimental results show that the total harmonic distortion (THD) of the ameliorated algorithm is improved by 1.28% compared to the EFA without the judgment module with a stimulus amplitude of 30 mV. The proposed scheme can effectively improve the dynamic range of the 3×3 coupler demodulation to reach 125.64 dB @ 1 kHz and 1% THD. The algorithm ensures the effective operation of the EFA under small phase shift conditions and improves the accuracy of phase demodulation.

7.
Anal Chem ; 95(11): 5142-5150, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36892255

RESUMO

The ultrasensitive and quantitative detection of renal cancer protein biomarkers present at ultralow concentrations for early-stage cancer diagnosis requires a biosensing probe possessing ultrahigh detection sensitivity and remarkable biosensing selectivity. Here, we report an optical microfiber integrated with Ti3C2-supported gold nanorod hybrid nanointerfaces for implementation in ultrasensitive sensing of the carbonic anhydrase IX (CAIX) protein and renal cancer cells. Because the evanescent field of the fiber is strongly coupled with nanointerfaces in the near-infrared region, the proposed optical microfiber biosensor achieves ultrahigh-sensitivity detection of the CAIX protein biomarker with ultralow limits of detection (LODs) of 13.8 zM in pure buffer solution and 0.19 aM in 30% serum solution. In addition, the proposed sensor also successfully and specifically recognizes living renal cancer cells in cell culture media with a LOD of 180 cells/mL. This strategy may serves as a powerful biosensing platform that combines the quantification of protein biomarkers and cancer cells, resulting in a higher accuracy of early-stage renal cancer diagnosis and screenings.


Assuntos
Técnicas Biossensoriais , Neoplasias Renais , Nanotubos , Humanos , Ouro , Titânio , Técnicas Biossensoriais/métodos , Limite de Detecção , Antígeno Carcinoembrionário , Neoplasias Renais/diagnóstico
8.
Opt Express ; 31(5): 7144-7158, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859851

RESUMO

In the adaptive freeform surface interferometer, the adaptive algorithms were equipped to find the required aberration compensation, making interferogram with dark areas (incomplete interferogram) sparse. However, traditional blind search-based algorithms are limited by convergence rate, time consumption, and convenience. As an alternative, we propose an intelligent approach composed of deep learning and ray tracing technology, which can recover sparse fringes from the incomplete interferogram without iterations. Simulations show that the proposed method has only a few seconds time cost with the failure rate less than 4‰. At the same time, the proposed method is easy to perform because it does not require the manual intervention of internal parameters before execution as in traditional algorithms. Finally, the feasibility of the proposed method was validated in the experiment. We believe that this approach is much more promising in the future.

9.
Opt Express ; 31(5): 7175-7186, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859854

RESUMO

For the optical fiber sensing system using phase generated carrier (PGC) technology, it is very important to eliminate the nonlinear effect of phase modulation depth (C) fluctuation on the demodulation results in the actual environment. In this paper, an ameliorated phase generated carrier demodulation technique is presented to calculate the C value and suppress its nonlinear influence on the demodulation results. The value of C is calculated out by the fundamental and third harmonic components with the equation fitted by the orthogonal distance regression algorithm. Then the Bessel recursive formula is used to convert the coefficients of each order of Bessel function contained in demodulation result into C values. Finally, the coefficients in demodulation result are removed by the calculated C values. In the experiment, when the C ranges from 1.0 rad to 3.5 rad, the minimum total harmonic distortion and maximum phase amplitude fluctuation of the ameliorated algorithm are 0.09% and 3.58%, which are far superior to the demodulation results of the traditional arctangent algorithm. The experimental results demonstrate that the proposed method can effectively eliminate the error caused by the fluctuation of the C value, which provides a reference for signal processing in practical applications of fiber-optic interferometric sensors.

10.
Opt Express ; 31(12): 18993-19005, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381326

RESUMO

Plastic optical fiber communication (POFC) systems are particularly sensitive to signal performance and power budget. In this paper, we propose what we belive to be a novel scheme to jointly enhance the bit-error-ratio (BER) performance and coupling efficiency for multi-level pulse amplitude modulation (PAM-M) based POFC systems. The computational temporal ghost imaging (CTGI) algorithm is developed for PAM4 modulation for the first time to resist the system distortion. The simulation results reveal that enhanced BER performance and clear eye diagrams are acquired by using CTGI algorithm with an optimized modulation basis. Experimental results also investigate and show, with CTGI algorithm, the BER performance for 180 Mb/s PAM4 signals is enhanced from 2.2 × 10-2 to 8.4 × 10-4 over 10 m POF by using a 40 MHz photodetector. The POF link is equipped with micro-lenses at its end faces by using a ball-burning technique, which helps to increase the coupling efficiency from 28.64% to 70.61%. Both simulation and experimental results show that the proposed scheme is feasible to achieve a cost-effective and high-speed POFC system with short reach.

11.
Opt Express ; 31(21): 33765-33775, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859149

RESUMO

The reference interferometer scheme is an effective noise reduction method, but the optical path length difference (OPD) of the two interferometers must be strictly equal, which limits its application in practical environments. In this paper, an improved reference interferometer demodulation technique without strictly equal OPDs is proposed to suppress phase noise. By introducing a reference interferometer, the phase noise can be removed from the demodulation results. The combination of the differential self-multiplication algorithm and the fitted phase modulation depth calculation formula can evaluate the phase modulation depth of both interferometers in real time and simultaneously eliminate the nonlinear distortion caused by phase modulation depth drift and the effect of different OPDs on the reference interferometer scheme. The experimental results show that the technique can obtain highly stable and accurate demodulation results even if the OPDs of the two reference interferometers are different. The phase modulation depth calculation error is less than 0.57%, the maximum phase noise reduction is 15 dB, the average reduction is 9 dB, the minimum total harmonic distortion is 0.17%, and the SINAD reaches 35.90 dB.

12.
Opt Express ; 31(16): 25372-25384, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710426

RESUMO

In this article, highly sensitive voltage, thermal and magnetic field fiber sensors were obtained in magnetic nanoparticles-doped E7 liquid crystals filled into photonic crystal fibers (PLCF). The voltage and temperature sensitivity reached at 12.598 nm/V and -3.874 nm/°C, respectively. The minimum voltage response time is 48.2 ms. The phase transition temperature Tc of liquid crystal with magnetic dopant was reduced from 60 °C to 46 °C. The magnetic field sensor based on magnetic nanoparticles-doped PLCF were obtained with sensitivity of 118.2 pm/mT from 400 to 460 mT.

13.
Opt Lett ; 48(17): 4657-4660, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656579

RESUMO

Phase difference sensing technology (PDST) is employed for topography measurement, and two interference structures are proposed to achieve upper-limit adjustment and high resolution in the measurement range: a dual-wavelength system with a single Fabry-Perot (FP) cavity and a single-wavelength system with dual FP cavities. The phase difference between the two interference signals is determined by an elliptic fitting algorithm (EFA), and this change in phase difference is utilized to characterize the step height. Experimental results indicate that the measurement upper-limit can be adjusted to either 410 µm, 187 µm, or 108 µm by varying the wavelength difference in the dual-wavelength system, which gives a measurement error of 2.96%. In contrast, while offering a measurement resolution of 3.47 nm, the single-wavelength system exhibits a measurement error of 5.38%. The proposed method is capable of satisfying the measurement requirements during micro-electromechanical system (MEMS) processing with proficiency.

14.
Opt Lett ; 48(7): 1690-1693, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221742

RESUMO

An improved ellipse-fitting algorithm phase demodulation (EFAPD) technique is proposed to reduce the influence of light source intensity noise on a system. In the original EFAPD, the sum of the intensities of coherent light (ICLS) is an important part of the interference signal noise, which makes the demodulation results suffer. The improved EFAPD corrects the ICLS and fringe contrast quantity of the interference signal by an ellipse-fitting algorithm, and then calculates the ICLS based on the structure of pull-cone 3 × 3 coupler, so as to remove it in the algorithm. Experimental results show that the noise of the improved EFAPD system is significantly reduced compared with that of the original EFAPD, with a maximum reduction of 35.57 dB. The improved EFAPD makes up for the deficiency of the original EFAPD in suppressing light source intensity noise, and promotes the application and popularization of EFAPD.

15.
Phys Chem Chem Phys ; 25(9): 7047, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36794492

RESUMO

Correction for 'Liquid crystal random lasers' by Guangyin Qu et al., Phys. Chem. Chem. Phys., 2023, 25, 48-63, https://doi.org/10.1039/D2CP02859J.

16.
Sensors (Basel) ; 23(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896505

RESUMO

Laser Doppler velocimetry (LDV) based on a differential laser Doppler system has been widely used in fluid mechanics to measure particle velocity. However, the two outgoing lights must intersect strictly at the measurement position. In cross-interface applications, due to interface effects, two beams of light become easily disjointed. To address the issue, we present a laser velocimeter in a coaxial arrangement consisting of the following components: a single-frequency laser (wavelength λ = 532 nm) and a Twyman-Green interferometer. In contrast to previous LDV systems, a laser velocimeter based on the Twyman-Green interferometer has the advantage of realizing cross-interface measurement. At the same time, the sensitive direction of the instrument can be changed according to the direction of the measured speed. We have developed a 4000 m level laser hydrothermal flow velocity measurement prototype suitable for deep-sea in situ measurement. The system underwent a withstand voltage test at the Qingdao Deep Sea Base, and the signal obtained was normal under a high pressure of 40 MPa. The velocity contrast measurement was carried out at the China Institute of Water Resources and Hydropower Research. The maximum relative error of the measurement was 8.82% when compared with the acoustic Doppler velocimeter at the low-speed range of 0.1-1 m/s. The maximum relative error of the measurement was 1.98% when compared with the nozzle standard velocity system at the high-speed range of 1-7 m/s. Finally, the prototype system was successfully evaluated in the shallow sea in Lingshui, Hainan, with it demonstrating great potential for the in situ measurement of fluid velocity at marine hydrothermal vents.

17.
Opt Express ; 30(13): 23756-23762, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225050

RESUMO

A high performance AlGaN-based back-illuminated solar-blind ultraviolet (UV) p-i-n photodetectors (PDs) are fabricated on sapphire substrates. The fabricated PD exhibits ultra-low dark current of less than 0.15 pA under -5 V bias, which corresponds to a dark current density of <1.5×10-11 A/cm2. In particular, the PD shows broad spectral response from 240 nm to 285 nm with an excellent solar-blind/UV rejection ratio of more than 103. The peak responsivity at the wavelength of 275 nm reaches 0.19 A/W at -5 V, corresponding to a maximum quantum efficiency of approximately 88%. Based on the absence of any anti-reflection coating, this corresponds to nearly 100% internal quantum efficiency. In addition, the PD shows a quite fast response of 0.62 ms. To the best of our knowledge, this is the record low dark current density and broadest response band reported for the back-illuminated AlGaN-based solar-blind UV detectors.

18.
Opt Express ; 30(18): 32528-32539, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242312

RESUMO

The adaptive interferometer has been recently proposed to realize the metrology of unknown freeform surfaces with several restructured algorithms for feedback control. The adaptive moment estimation (Adam) stochastic parallel gradient descent (SPGD) algorithm is employed in this paper for fringes release. The proposed algorithm makes considerable progress in relieving conflict of the convergence rate, speed, and parameters intervention. Simulations and experiments show its 37% time saving and 99% convergence rate, with arbitrarily configured parameter increment, compared with the SPGD algorithm. It would have great potential in in-process tests in freeform surface fabrication or large-volume testing.

19.
Opt Express ; 30(15): 26941-26954, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236876

RESUMO

In the reference interferometer demodulation scheme, it's difficult to guarantee in practice that both interferometers have the same optical path length difference (OPD), which makes the phase modulation depth different in different interferometers with the same laser modulation. The random shift of phase modulation depth also affects the demodulation results. An improved phase-generated carrier (PGC) technique is proposed based on an auxiliary reference interferometer and the ellipse fitting algorithm (EFA). The technique ensures the correct fitting of the EFA for small amplitude signals by introducing a sinusoidal signal as an additional phase modulation. The combination of the reference interferometer and EFA can eliminate the effect of different phase modulation depths of the two interferometers caused by different OPDs, the non-linear distortion caused by phase modulation depth shifts, and improve the accuracy of the demodulation results. The experiment results are consistent with the theoretical analysis, and the method extends the application of the EFA in the reference interferometer phase demodulation technique.

20.
Opt Lett ; 47(21): 5449-5452, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219241

RESUMO

In addition to the concept of picometer resolution, we discuss macro displacement measurement with a vortex beam interferometer. Three factors limiting large displacement measurement are resolved. Small topological charge numbers promise both high sensitivity and large displacement measurements. With a computing visual method, a virtual moiré pointer image immune to beam misalignment is proposed to calculate displacements. Interestingly, the absolute benchmark is found for cycle counting in the moiré pointer image of fractional topological charge. The vortex beam interferometer would not stop at the tiny displacement measurement in simulations. We report experimental measurements of nanoscale to hundred millimeter displacement in a vortex beam displacement measurement interferometer (DMI) for the first time, to the best of our knowledge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA