Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Immunol ; 208(6): 1424-1433, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35197329

RESUMO

NF-erythroid 2-related factor 2 (Nrf2) is a major transcription factor to protect cells against reactive oxygen species (ROS) and reactive toxicants. Meanwhile, Nrf2 can inhibit contact dermatitis through redox-dependent and -independent pathways. However, the underlying mechanisms of how Nrf2 mediates irritant contact dermatitis (ICD) are still unclear. In this article, we elucidated the role of Nrf2 in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced acute ICD. Our study demonstrated that the ear thickness, redness, swelling, and neutrophil infiltration were significantly increased, accompanied by increased expression of inflammatory cytokines (IL-1α, IL-1ß, IL-6, etc.) and decreased expression of antioxidant genes (HO-1 and NQO1) in Nrf2 knockout mice. Moreover, ERK phosphorylation was elevated in mouse embryonic fibroblasts (MEFs) from Nrf2 knockout mouse. Inhibition of ERK significantly alleviated TPA-induced cutaneous inflammation and ROS accumulation in MEFs derived from mouse. Conversely, ROS scavenging inhibited the ERK activation and TPA-induced inflammation in MEFs. Taken together, the findings illustrate the key role of the Nrf2/ROS/ERK signaling pathway in TPA-induced acute ICD.


Assuntos
Dermatite de Contato , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Fibroblastos/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação , Irritantes , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Acetato de Tetradecanoilforbol
2.
Tohoku J Exp Med ; 262(4): 269-276, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38233113

RESUMO

Osimertinib, a promising and approved third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), is a standard strategy for EGFR-mutant non-small cell lung cancer (NSCLC) patients. However, developed resistance is unavoidable, which reduces its long-term effectiveness. In this study, RNA sequencing was performed to analyze differentially expressed genes (DEGs). The PrognoScan database and Gene Expression Profiling Interactive Analysis (GEPIA) were used to identify the key genes for clinical prognosis and gene correlation respectively. Protein expression was determined by western blot analysis. Cell viability assay and Ki67 staining were used to evaluate the effect of osimertinib on tumor cells. Finally, we screened out two hub genes, myelocytomatosis oncogene (Myc) and axis inhibition protein 1 (Axin1), upregulated in three osimertinib-resistant cell lines through RNA sequencing and bioinformatics analysis. Next, cell experiment confirmed that expression of C-MYC and AXIN1 were elevated in different EGFR mutant NSCLC cell lines with acquired resistance to osimertinib, compared with their corresponding parental cell lines. Furthermore, we demonstrated that AXIN1 upregulated the expression of C-MYC and mediated the acquired resistance of EGFR mutant NSCLC cells to osimertinib in vitro. In conclusion, AXIN1 affected the sensitivity of EGFR mutant NSCLC to osimertinib via regulating C-MYC expression in vitro. Targeting AXIN1/MYC signaling may be a potential new strategy for overcoming acquired resistance to osimertinib.


Assuntos
Acrilamidas , Compostos de Anilina , Proteína Axina , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Regulação Neoplásica da Expressão Gênica , Indóis , Neoplasias Pulmonares , Mutação , Proteínas Proto-Oncogênicas c-myc , Pirimidinas , Humanos , Acrilamidas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Compostos de Anilina/farmacologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Axina/genética , Proteína Axina/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Mutação/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
3.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37373405

RESUMO

Thaumatin-like proteins (TLPs) are pathogenesis-related proteins with pivotal roles in plant defense mechanisms. In this study, various bioinformatics and RNA-seq methods were used to analyze the biotic and abiotic stress responses of the TLP family in Phyllostachys edulis. Overall, 81 TLP genes were identified in P. edulis; 166 TLPs from four plant species were divided into three groups and ten subclasses, with genetic covariance observed between these species. Subcellular localization in silico studies indicated that TLPs were primarily distributed in the extracellular. Analysis of the upstream sequences of TLPs demonstrated the presence of cis-acting elements related to disease defense, environmental stress, and hormonal responses. Multiple sequence alignment demonstrated that most TLPs possessed five conserved REDDD amino acid sequences with only a few amino acid residue differences. RNA-seq analysis of P. edulis responses to Aciculosporium take, the pathogenic fungus that causes witches' broom disease, showed that P. edulis TLPs (PeTLPs) were expressed in different organs, with the highest expression in buds. PeTLPs responded to both abscisic acid and salicylic acid stress. These PeTLP expression patterns were consistent with their gene and protein structures. Collectively, our findings provide a basis for further comprehensive analyses of the genes related to witches' broom in P. edulis.


Assuntos
Doenças por Fitoplasmas , Poaceae , Poaceae/genética , Sequência de Aminoácidos , Plantas , Fungos
4.
Biochem Biophys Res Commun ; 591: 1-6, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986435

RESUMO

Scleroderma, characterized by extensive fibrosis and vascular alterations, involves excessive fibroblast activation, uncontrolled inflammation, and abnormal collagen deposition. Previous studies showed that administrations of either 1,25(OH)2D3 or vitamin D analog effectively decreased or reversed skin fibrosis by regulating the extracellular matrix homeostasis. The actions of 1,25(OH)2D3 are mediated by the vitamin D receptor (VDR), a transcription regulator crucial for skin homeostasis. Although evidence suggests that keratinocyte-fibroblast interaction influences the development of scleroderma, the role of keratinocytes in scleroderma remains unknown. Here, we demonstrated that the ablation of VDR in keratinocytes greatly exacerbated dermal fibrosis in HOCl-induced scleroderma in mice. The deficiency of VDR in the epidermis marked increased dermal thickness, inflammatory cell infiltration, and severe collagen deposition in comparison to the control group in HOCl-treated skin. Moreover, significant elevations in expression levels of mRNA for collagen overproduction (Col1A1, Col1A2, Col3A1, α-SMA, MMP9, TGF-ß1) and proinflammatory cytokines (IL-1ß, IL-6, CXCL1, CXCL2) were observed in VDR conditional KO versus control mice following HOCl treatment. Collectively, these results suggest that VDR in keratinocytes plays a pivotal role in scleroderma progression, and the interplay between keratinocytes and fibroblasts deserves more attention regarding the exploration of the pathogenesis and treatment for scleroderma.


Assuntos
Derme/patologia , Inflamação/patologia , Queratinócitos/patologia , Receptores de Calcitriol/deficiência , Dermatopatias/patologia , Animais , Colágeno/biossíntese , Modelos Animais de Doenças , Fibrose , Ácido Hipocloroso , Inflamação/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Calcitriol/metabolismo , Dermatopatias/genética , Regulação para Cima/genética
5.
Aging Cell ; 23(2): e14054, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040661

RESUMO

Skin aging is characterized by changes in its structural, cellular, and molecular components in both the epidermis and dermis. Dermal aging is distinguished by reduced dermal thickness, increased wrinkles, and a sagging appearance. Due to intrinsic or extrinsic factors, accumulation of excessive reactive oxygen species (ROS) triggers a series of aging events, including imbalanced extracellular matrix (ECM) homeostasis, accumulation of senescent fibroblasts, loss of cell identity, and chronic inflammation mediated by senescence-associated secretory phenotype (SASP). These events are regulated by signaling pathways, such as nuclear factor erythroid 2-related factor 2 (Nrf2), mechanistic target of rapamycin (mTOR), transforming growth factor beta (TGF-ß), and insulin-like growth factor 1 (IGF-1). Senescent fibroblasts can induce and accelerate age-related dysfunction of other skin cells and may even cause systemic inflammation. In this review, we summarize the role of dermal fibroblasts in cutaneous aging and inflammation. Moreover, the underlying mechanisms by which dermal fibroblasts influence cutaneous aging and inflammation are also discussed.


Assuntos
Senescência Celular , Envelhecimento da Pele , Humanos , Senescência Celular/fisiologia , Fibroblastos/metabolismo , Derme , Inflamação/metabolismo
6.
Discov Oncol ; 15(1): 26, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305998

RESUMO

Gastric cancer (GC) is a heterogeneous disease whose development is accompanied by alterations in a variety of pathogenic genes. The phospholipase C Delta 3 enzyme is a member of the phospholipase C family, which controls substance transport between cells in the body. However, its role in gastric cancer has not been discovered. The purpose of this study was to investigate the expression and mechanism of action of PLCD3 in connection to gastric cancer. By Western blot analysis and immunohistochemistry, PLCD3 mRNA and protein expression levels were measured, with high PLCD3 expression suggesting poor prognosis. In N87 and HGC-27 cells, the silencing of PLCD3 using small interfering RNA effectively induced apoptosis and inhibited tumor cell proliferation, invasion, and migration. Conversely, overexpression of PLCD3 using overexpressed plasmids inhibited apoptosis in AGS and BGC-823 cells and promoted proliferation, migration, and invasion. In order to investigate the underlying mechanisms, we conducted further analysis of PLCD3, which indicates that this protein is closely related to the cell cycle and EMT. Additionally, we found that overexpression of PLCD3 inhibits apoptosis and promotes the development of GC cells through JAK2/STAT3 signaling. In conclusion, PLCD3 inhibits apoptosis and promotes proliferation, invasion, and migration, which indicated that PLCD3 might serve as a therapeutic target for gastric cancer.

7.
Clin Neurophysiol ; 165: 90-96, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38991378

RESUMO

OBJECTIVE: To investigate the local cortical morphology and individual-based morphological brain networks (MBNs) changes in children with Rolandic epilepsy (RE). METHODS: Based on the structural MRI data of 56 children with RE and 56 healthy controls (HC), we constructed four types of individual-based MBNs using morphological indices (cortical thickness [CT], fractal dimension [FD], gyrification index [GI], and sulcal depth [SD]). The global and nodal properties of the brain networks were analyzed using graph theory. The between-group difference in local morphology and network topology was estimated, and partial correlation analysis was further analyzed. RESULTS: Compared with the HC, children with RE showed regional GI increases in the right posterior cingulate gyrus and SD increases in the right anterior cingulate gyrus and medial prefrontal cortex. Regarding the network level, RE exhibited increased characteristic path length in CT-based and FD-based networks, while decreased FD-based network node efficiency in the right inferior frontal gyrus. No significant correlation between altered morphological features and clinical variables was found in RE. CONCLUSIONS: These findings indicated that children with RE have disrupted morphological brain network organization beyond local morphology changes. SIGNIFICANCE: The present study could provide more theoretical basis for exploring the neuropathological mechanisms in RE.

8.
J Biol Chem ; 286(46): 40069-74, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21965684

RESUMO

Membrane-associated guanylate kinases (MAGUKs) are a large family of scaffold proteins that play essential roles in tethering membrane receptors, adhesion molecules, and macromolecular signaling complexes for tissue developments, cell-cell communications, and intracellular signal transductions. The defining feature of the MAGUK family scaffolds is that each member contains a conserved core consisting of a PSD-95/Dlg/ZO-1 (PDZ) domain, an Src homology 3 (SH3) domain, and a catalytically inactive guanylate kinase (GuK) domain arranged in tandem, although the structural features and functional implications of the PDZ-SH3-GuK tandem arrangement are unclear. The structure of the ZO-1 PDZ3-SH3-GuK tandem solved in this study reveals that the PDZ domain directly interacts with the SH3-GuK module, forming a structural supramodule with distinct target binding properties with respect to the isolated domains. Structure-based sequence analysis suggests that the PDZ-SH3-GuK tandems of other members of the MAGUK family also form supramodules.


Assuntos
Guanilato Ciclase/química , Proteínas de Membrana/química , Fosfoproteínas/química , Cristalografia por Raios X , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Relação Estrutura-Atividade , Proteína da Zônula de Oclusão-1 , Domínios de Homologia de src
9.
J Invest Dermatol ; 142(8): 2228-2237.e4, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35131256

RESUMO

Metastasis is the main reason for the high mortality of patients and indeed a difficult task in the treatment of cutaneous melanoma. Therefore, it is of great clinical value to explore the molecular mechanism of cutaneous metastatic melanoma and develop novel therapies. MED1, acting as a factor required for activator-dependent transcription, is reported to be involved in carcinogenesis and progression. In this study, we found that MED1 was highly expressed in patients with cutaneous melanoma. MED1 downregulation could induce cellular epithelial-to-mesenchymal transition and promote migration, invasion, and metastasis of cutaneous melanoma in vivo and in vitro. Further analysis showed that in Med1 knockdown cells, the TGFß/SMAD2 signaling pathway mediated an increase in epithelial-to-mesenchymal transition phenotype and migration. The opposite results were observed after treatment with TGFß inhibitors. To further explore the mechanism, we found that MED1 interacted with SMAD2, and MED1 downregulation could protect SMAD2 from degradation by inhibiting SMAD2 ubiquitination. Together, these results suggest that MED1 inhibited TGFß signaling pathway to reduce cell epithelial-to-mesenchymal transition phenotype and migration through SMAD2 ubiquitination in the metastasis of cutaneous melanoma. Our findings elucidated the role of MED1 in the metastasis of cutaneous melanoma and provided a target for the therapeutic strategies of cutaneous melanoma.


Assuntos
Subunidade 1 do Complexo Mediador , Melanoma , Neoplasias Cutâneas , Proteína Smad2 , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação para Baixo , Transição Epitelial-Mesenquimal , Humanos , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo , Melanoma/patologia , Transdução de Sinais/genética , Neoplasias Cutâneas/patologia , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ubiquitinação , Melanoma Maligno Cutâneo
10.
Gene ; 531(1): 64-70, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23933270

RESUMO

A majority of mammalian promoters are associated with CpG islands. CpG island promoters frequently lack common core promoter elements, such as the TATA box, and often have dispersed transcription start sites. The mechanism through which CpG island promoters are transcriptionally initiated remains unclear. We speculate that some transcription factors can direct transcription initiation by themselves. To test this hypothesis, we screened a variety of transcription factors to see whether they could initiate transcription. Most transcription factors, including specificity protein 1 (Sp1) and nuclear factor Y (NF-Y), showed little transcriptional initiation activity. However, nuclear respiratory factor 1 (NRF-1), the basic helix-loop-helix/leucine zipper (bHLH/ZIP) family of proteins and the E-twenty six (Ets) family of proteins had strong transcriptional activity. We further demonstrated that these transcription factors initiate dispersed transcription. Our studies provide perspectives to the mechanism of transcription initiation from CpG island promoters.


Assuntos
Fatores de Transcrição/metabolismo , Ativação Transcricional , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Ilhas de CpG , Expressão Gênica , Genes Reporter , Humanos , Dados de Sequência Molecular , Fator 1 Relacionado a NF-E2/metabolismo , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-ets/metabolismo , TATA Box , Iniciação da Transcrição Genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA