Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Respir Res ; 22(1): 188, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183011

RESUMO

Xuan-bai-cheng-qi decoction (XCD), a traditional Chinese medicine (TCM) prescription, has been widely used to treat a variety of respiratory diseases in China, especially to seriously infectious diseases such as acute lung injury (ALI). Due to the complexity of the chemical constituent, however, the underlying pharmacological mechanism of action of XCD is still unclear. To explore its protective mechanism on ALI, firstly, a network pharmacology experiment was conducted to construct a component-target network of XCD, which identified 46 active components and 280 predicted target genes. Then, RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) between ALI model rats treated with and without XCD and 753 DEGs were found. By overlapping the target genes identified using network pharmacology and DEGs using RNA-seq, and subsequent protein-protein interaction (PPI) network analysis, 6 kernel targets such as vascular epidermal growth factor (VEGF), mammalian target of rapamycin (mTOR), AKT1, hypoxia-inducible factor-1α (HIF-1α), and phosphoinositide 3-kinase (PI3K) and gene of phosphate and tension homology deleted on chromsome ten (PTEN) were screened out to be closely relevant to ALI treatment. Verification experiments in the LPS-induced ALI model rats showed that XCD could alleviate lung tissue pathological injury through attenuating proinflammatory cytokines release such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß. Meanwhile, both the mRNA and protein expression levels of PI3K, mTOR, HIF-1α, and VEGF in the lung tissues were down-regulated with XCD treatment. Therefore, the regulations of XCD on PI3K/mTOR/HIF-1α/VEGF signaling pathway was probably a crucial mechanism involved in the protective mechanism of XCD on ALI treatment.


Assuntos
Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/prevenção & controle , Medicamentos de Ervas Chinesas/uso terapêutico , Lipopolissacarídeos/toxicidade , Farmacologia em Rede/métodos , Análise de Sequência de RNA/métodos , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Ratos , Ratos Wistar
2.
Inflamm Res ; 69(4): 365-373, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32130427

RESUMO

OBJECTIVE AND DESIGN: This study aimed to investigate the anti-pulmonary inflammation effect of emodin on Wistar rats with lipopolysaccharide (LPS)-induced acute lung injury (ALI) and RAW264.7 cells through the mammalian target of rapamycin (mTOR)/hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway. SUBJECTS: Wistar rats and RAW264.7 cells were studied. TREATMENT: LPS was used to induce inflammation in rats or RAW264.7 cells and emodin was given once a day before LPS stimulation and continued for a certain number of days. METHODS: Lung tissues and bronchoalveolar lavage fluid (BALF) were collected for the in vivo experiment, while cells and supernatant were collected for the in vitro experiment. Pathological changes in the lung tissues were assessed by hematoxylin and eosin staining. The levels of inflammatory factors, including TNF-α, IL-1ß, and IL-6, were determined by enzyme-linked immunosorbent assay. The expression levels of p-mTOR, HIF-1α, and VEGF proteins were measured by Western blot analysis and immunohistochemistry. The mRNA levels of p70S6K, eIF4E-BP1, and eIF4E were measured by quantitative polymerase chain reaction. RESULTS: Emodin ameliorated pathological changes and infiltrated inflammatory cells in LPS-induced ALI. It also significantly reduced the expression of inflammatory factors, including TNF-α, IL-1ß, and IL-6, in BALF and downregulated the expression of p-mTOR, HIF-1α, and VEGF proteins in the lung tissues. Similar anti-inflammatory effects and the downregulation of the mTOR/HIF-1α/VEGF signaling pathway were found in RAW264.7 cells. The mRNA levels of p70S6K, eIF4E-BP1, and eIF4E also decreased in the macrophages. CONCLUSION: Emodin alleviated LPS-induced pulmonary inflammation in rat lung tissues and RAW264.7 cells through inhibiting the mTOR/HIF-1α/VEGF signaling pathway, which accounted for the therapeutic effects of emodin on ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Emodina/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/imunologia , Emodina/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Células RAW 264.7 , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia
4.
Materials (Basel) ; 17(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063877

RESUMO

Particle diameters and jet pressure in abrasive water jet (AWJ) are significant jet properties which deserve a better understanding for improving AWJ machining performance. Some influence factors have been verified regarding nozzle wear in abrasive water jet polishing application. A three-dimensional model of a nozzle is established to analyze the influence of internal multi-phase flow field distribution, which is based on Euler-Lagrange methodology. With the increase of jet pressure, the erosion rate decreases; with the increase of the diameter and mass flow rate of the erosion particles, the erosion speed increases as well. When the diameter of the outlet is worn to 1.6 mm, the pressure on the work piece caused by the abrasive water jet increases by more than double compared to the non-worn nozzle; when the diameter of the nozzle outlet is worn to 1.6 mm, the shear force is 2.5 times higher than the shear force when the diameter is 1.0, which means that the jet force is divergent when the diameter is 1.6 mm, and the damage of the work piece is very serious. The obtained results could improve polishing efficiency on the work piece, extend nozzle lifetimes, and guide the future design of AWJ nozzles.

5.
Chin J Integr Med ; 27(5): 345-352, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32840732

RESUMO

OBJECTIVE: To investigate the effects of emodin on inflammation and autophagy in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and reveal its underlying mechanism. METHODS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was conducted to find the appropriate dose for emodin. RAW264.7 cells pretreated with different concentrations (0-50 µmol/L) of emodin or vehicle for 2 h prior to exposure to LPS for 16 h. Cell morphology was examined and propidium iodide staining was used to examine cell cycle. Expressions of inflammation-related proteins [nuclear factor-kappaB (NF-κ B) and I-kappaB (I κ B)α] and autophagy-related proteins [light chain (LC)3, P62/sequestosome 1, mammalian target of rapamycin (mTOR), and p-mTOR] were examined using Western blot analysis. Expression of inflammation-related cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and IL-6 were detected by enzyme-linked immunosorbent assay. Autophagy was examined with LC3B fluorescence intensity and aggregation. The effect of emodin on autophagy was conducted with an autophagy inhibitor, 3-methyladenine (3-MA). RESULTS: The expression of NF-κ B in LPS-induced cells was significantly increased (P<0.01) and simultaneously I κ B α decreased compared with the normal cell (P<0.05). The expressions of TNF-α, IL-ß, and IL-6 proteins in the LPS-induced RAW264.7 cells were significantly higher than in the normal cell (P<0.05 or P<0.01). LPS increased the percentage of cells in the G0/G1 phase, which was recovered by emodin at different doses (12.5, 25, and 50µ mol/L, P<0.05 or P<0.01). The medium-dose (25 µ ml/L) emodin decreased the expressions of NF-κ B, P62 and p-mTOR (P<0.01) and increased I κ B α expression, LC3B II/I ratio as well as LC3B fluorescence intensity (P<0.05 or P<0.01). Meanwhile, the enhanced autophagic effects of emodin, such as the increment of LC3B II/ratio and the decrement of P62 expression, were suppressed by autophagy inhibitor 3-MA. CONCLUSION: Emodin could inhibit inflammation of mice RAW264.7 macrophages induced by LPS, possibly through activating autophagy.


Assuntos
Autofagia , Inflamação , Animais , Emodina/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos , Camundongos , NF-kappa B , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA