Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Physiol ; 602(18): 4409-4436, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38345865

RESUMO

Androgenic anabolic steroids (AAS) are commonly abused by young men. Male sex and increased AAS levels are associated with earlier and more severe manifestation of common cardiac conditions, such as atrial fibrillation, and rare ones, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Clinical observations suggest a potential atrial involvement in ARVC. Arrhythmogenic right ventricular cardiomyopathy is caused by desmosomal gene defects, including reduced plakoglobin expression. Here, we analysed clinical records from 146 ARVC patients to identify that ARVC is more common in males than females. Patients with ARVC also had an increased incidence of atrial arrhythmias and P wave changes. To study desmosomal vulnerability and the effects of AAS on the atria, young adult male mice, heterozygously deficient for plakoglobin (Plako+/-), and wild type (WT) littermates were chronically exposed to 5α-dihydrotestosterone (DHT) or placebo. The DHT increased atrial expression of pro-hypertrophic, fibrotic and inflammatory transcripts. In mice with reduced plakoglobin, DHT exaggerated P wave abnormalities, atrial conduction slowing, sodium current depletion, action potential amplitude reduction and the fall in action potential depolarization rate. Super-resolution microscopy revealed a decrease in NaV1.5 membrane clustering in Plako+/- atrial cardiomyocytes after DHT exposure. In summary, AAS combined with plakoglobin deficiency cause pathological atrial electrical remodelling in young male hearts. Male sex is likely to increase the risk of atrial arrhythmia, particularly in those with desmosomal gene variants. This risk is likely to be exaggerated further by AAS use. KEY POINTS: Androgenic male sex hormones, such as testosterone, might increase the risk of atrial fibrillation in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), which is often caused by desmosomal gene defects (e.g. reduced plakoglobin expression). In this study, we observed a significantly higher proportion of males who had ARVC compared with females, and atrial arrhythmias and P wave changes represented a common observation in advanced ARVC stages. In mice with reduced plakoglobin expression, chronic administration of 5α-dihydrotestosterone led to P wave abnormalities, atrial conduction slowing, sodium current depletion and a decrease in membrane-localized NaV1.5 clusters. 5α-Dihydrotestosterone, therefore, represents a stimulus aggravating the pro-arrhythmic phenotype in carriers of desmosomal mutations and can affect atrial electrical function.


Assuntos
gama Catenina , Animais , Masculino , Feminino , Camundongos , Humanos , gama Catenina/genética , gama Catenina/metabolismo , Adulto , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/fisiopatologia , Átrios do Coração/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/fisiopatologia , Displasia Arritmogênica Ventricular Direita/metabolismo , Di-Hidrotestosterona/farmacologia , Androgênios/farmacologia , Potenciais de Ação/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Adulto Jovem , Anabolizantes/farmacologia , Esteróides Androgênicos Anabolizantes
2.
J Vis Exp ; (148)2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31233017

RESUMO

Optical mapping is an established technique for high spatio-temporal resolution study of cardiac electrophysiology in multi-cellular preparations. Here we present, in a step-by-step guide, the use of ElectroMap for analysis, quantification, and mapping of high-resolution voltage and calcium datasets acquired by optical mapping. ElectroMap analysis options cover a wide variety of key electrophysiological parameters, and the graphical user interface allows straightforward modification of pre-processing and parameter definitions, making ElectroMap applicable to a wide range of experimental models. We show how built-in pacing frequency detection and signal segmentation allows high-throughput analysis of entire experimental recordings, acute responses, and single beat-to-beat variability. Additionally, ElectroMap incorporates automated multi-beat averaging to improve signal quality of noisy datasets, and here we demonstrate how this feature can help elucidate electrophysiological changes that might otherwise go undetected when using single beat analysis. Custom modules are included within the software for detailed investigation of conduction, single file analysis, and alternans, as demonstrated here. This software platform can be used to enable and accelerate the processing, analysis, and mapping of complex cardiac electrophysiology.


Assuntos
Função Atrial/fisiologia , Eletrofisiologia Cardíaca , Fenômenos Eletrofisiológicos , Função Ventricular/fisiologia , Animais , Cobaias , Átrios do Coração , Frequência Cardíaca , Ventrículos do Coração , Processamento de Imagem Assistida por Computador , Camundongos , Software
3.
Sci Rep ; 9(1): 1389, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718782

RESUMO

The ability to record and analyse electrical behaviour across the heart using optical and electrode mapping has revolutionised cardiac research. However, wider uptake of these technologies is constrained by the lack of multi-functional and robustly characterised analysis and mapping software. We present ElectroMap, an adaptable, high-throughput, open-source software for processing, analysis and mapping of complex electrophysiology datasets from diverse experimental models and acquisition modalities. Key innovation is development of standalone module for quantification of conduction velocity, employing multiple methodologies, currently not widely available to researchers. ElectroMap has also been designed to support multiple methodologies for accurate calculation of activation, repolarisation, arrhythmia detection, calcium handling and beat-to-beat heterogeneity. ElectroMap implements automated signal segmentation, ensemble averaging and integrates optogenetic approaches. Here we employ ElectroMap for analysis, mapping and detection of pro-arrhythmic phenomena in silico, in cellulo, animal model and in vivo patient datasets. We anticipate that ElectroMap will accelerate innovative cardiac research and enhance the uptake, application and interpretation of mapping technologies leading to novel approaches for arrhythmia prevention.


Assuntos
Eletrofisiologia Cardíaca , Software , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Cobaias , Átrios do Coração/diagnóstico por imagem , Sistema de Condução Cardíaco/fisiologia , Humanos , Camundongos , Reprodutibilidade dos Testes , Interface Usuário-Computador
4.
PLoS One ; 11(5): e0154077, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27149380

RESUMO

BACKGROUND: The left atrial posterior wall (LAPW) is potentially an important area for the development and maintenance of atrial fibrillation. We assessed whether there are regional electrical differences throughout the murine left atrial myocardium that could underlie regional differences in arrhythmia susceptibility. METHODS: We used high-resolution optical mapping and sharp microelectrode recordings to quantify regional differences in electrical activation and repolarisation within the intact, superfused murine left atrium and quantified regional ion channel mRNA expression by Taqman Low Density Array. We also performed selected cellular electrophysiology experiments to validate regional differences in ion channel function. RESULTS: Spontaneous ectopic activity was observed during sustained 1Hz pacing in 10/19 intact LA and this was abolished following resection of LAPW (0/19 resected LA, P<0.001). The source of the ectopic activity was the LAPW myocardium, distinct from the pulmonary vein sleeve and LAA, determined by optical mapping. Overall, LAPW action potentials (APs) were ca. 40% longer than the LAA and this region displayed more APD heterogeneity. mRNA expression of Kcna4, Kcnj3 and Kcnj5 was lower in the LAPW myocardium than in the LAA. Cardiomyocytes isolated from the LAPW had decreased Ito and a reduced IKACh current density at both positive and negative test potentials. CONCLUSIONS: The murine LAPW myocardium has a different electrical phenotype and ion channel mRNA expression profile compared with other regions of the LA, and this is associated with increased ectopic activity. If similar regional electrical differences are present in the human LA, then the LAPW may be a potential future target for treatment of atrial fibrillation.


Assuntos
Complexos Atriais Prematuros/fisiopatologia , Átrios do Coração/fisiopatologia , Canais Iônicos/fisiologia , Potenciais de Ação/fisiologia , Animais , Função Atrial/fisiologia , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/análise , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/fisiologia , Átrios do Coração/química , Canais Iônicos/análise , Canal de Potássio Kv1.4/análise , Canal de Potássio Kv1.4/fisiologia , Masculino , Camundongos , Miócitos Cardíacos/química , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp
5.
J Am Coll Cardiol ; 68(17): 1881-1894, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27765191

RESUMO

BACKGROUND: Antiarrhythmic drugs are widely used to treat patients with atrial fibrillation (AF), but the mechanisms conveying their variable effectiveness are not known. Recent data suggested that paired like homeodomain-2 transcription factor (PITX2) might play an important role in regulating gene expression and electrical function of the adult left atrium (LA). OBJECTIVES: After determining LA PITX2 expression in AF patients requiring rhythm control therapy, the authors assessed the effects of Pitx2c on LA electrophysiology and the effect of antiarrhythmic drugs. METHODS: LA PITX2 messenger ribonucleic acid (mRNA) levels were measured in 95 patients undergoing thoracoscopic AF ablation. The effects of flecainide, a sodium (Na+)-channel blocker, and d,l-sotalol, a potassium channel blocker, were studied in littermate mice with normal and reduced Pitx2c mRNA by electrophysiological study, optical mapping, and patch clamp studies. PITX2-dependent mechanisms of antiarrhythmic drug action were studied in human embryonic kidney (HEK) cells expressing human Na channels and by modeling human action potentials. RESULTS: Flecainide 1 µmol/l was more effective in suppressing atrial arrhythmias in atria with reduced Pitx2c mRNA levels (Pitx2c+/-). Resting membrane potential was more depolarized in Pitx2c+/- atria, and TWIK-related acid-sensitive K+ channel 2 (TASK-2) gene and protein expression were decreased. This resulted in enhanced post-repolarization refractoriness and more effective Na-channel inhibition. Defined holding potentials eliminated differences in flecainide's effects between wild-type and Pitx2c+/- atrial cardiomyocytes. More positive holding potentials replicated the increased effectiveness of flecainide in blocking human Nav1.5 channels in HEK293 cells. Computer modeling reproduced an enhanced effectiveness of Na-channel block when resting membrane potential was slightly depolarized. CONCLUSIONS: PITX2 mRNA modulates atrial resting membrane potential and thereby alters the effectiveness of Na-channel blockers. PITX2 and ion channels regulating the resting membrane potential may provide novel targets for antiarrhythmic drug development and companion therapeutics in AF.


Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/fisiopatologia , Flecainida/uso terapêutico , Proteínas de Homeodomínio/fisiologia , Potenciais da Membrana/fisiologia , Fatores de Transcrição/fisiologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico , Adulto , Idoso , Animais , Fenômenos Eletrofisiológicos , Feminino , Regulação da Expressão Gênica , Átrios do Coração/fisiopatologia , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fatores de Transcrição/genética , Proteína Homeobox PITX2
6.
Prog Biophys Mol Biol ; 110(2-3): 340-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22944071

RESUMO

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiomyopathy and a leading cause of sudden cardiac death in a young population. ARVC is especially common in young athletes. Mutations in different desmosomal genes have been identified causing dysfunctional cell-cell contacts. Reduced myocardial expression of plakoglobin in cell-cell contact complexes appears to associate with disease manifestation in patients harbouring mutations within other cell-cell contact genes. Experimental data suggest that preload reduction may be a simple and effective intervention to prevent disease progression and ventricular arrhythmias in ARVC. This review discusses the potential effects of this innovative approach and describes the design of the first controlled trial of preload-reducing therapy in patients with ARVC.


Assuntos
Displasia Arritmogênica Ventricular Direita/fisiopatologia , Displasia Arritmogênica Ventricular Direita/terapia , Ensaios Clínicos como Assunto/métodos , Progressão da Doença , Coração/fisiopatologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA