Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.062
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Pathog ; 20(6): e1012296, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885278

RESUMO

The obligate endosymbiont Wolbachia induces pathogen interference in the primary disease vector Aedes aegypti, facilitating the utilization of Wolbachia-based mosquito control for arbovirus prevention, particularly against dengue virus (DENV). However, the mechanisms underlying Wolbachia-mediated virus blockade have not been fully elucidated. Here, we report that Wolbachia activates the host cytoplasmic miRNA biogenesis pathway to suppress DENV infection. Through the suppression of the long noncoding RNA aae-lnc-2268 by Wolbachia wAlbB, aae-miR-34-3p, a miRNA upregulated by the Wolbachia strains wAlbB and wMelPop, promoted the expression of the antiviral effector defensin and cecropin genes through the Toll pathway regulator MyD88. Notably, anti-DENV resistance induced by Wolbachia can be further enhanced, with the potential to achieve complete virus blockade by increasing the expression of aae-miR-34-3p in Ae. aegypti. Furthermore, the downregulation of aae-miR-34-3p compromised Wolbachia-mediated virus blockade. These findings reveal a novel mechanism by which Wolbachia establishes crosstalk between the cytoplasmic miRNA pathway and the Toll pathway via aae-miR-34-3p to strengthen antiviral immune responses against DENV. Our results will aid in the advancement of Wolbachia for arbovirus control by enhancing its virus-blocking efficiency.


Assuntos
Aedes , Vírus da Dengue , Dengue , MicroRNAs , Wolbachia , Wolbachia/fisiologia , Aedes/microbiologia , Aedes/virologia , Aedes/imunologia , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Vírus da Dengue/imunologia , Dengue/imunologia , Dengue/virologia , Receptores Toll-Like/metabolismo , Receptores Toll-Like/imunologia , Mosquitos Vetores/virologia , Mosquitos Vetores/microbiologia , Mosquitos Vetores/imunologia , Transdução de Sinais , RNA Longo não Codificante/genética , RNA Longo não Codificante/imunologia , Imunidade Inata , Simbiose
2.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37539835

RESUMO

Enhancers are crucial cis-regulatory elements that control gene expression in a cell-type-specific manner. Despite extensive genetic and computational studies, accurately predicting enhancer activity in different cell types remains a challenge, and the grammar of enhancers is still poorly understood. Here, we present HEAP (high-resolution enhancer activity prediction), an explainable deep learning framework for predicting enhancers and exploring enhancer grammar. The framework includes three modules that use grammar-based reasoning for enhancer prediction. The algorithm can incorporate DNA sequences and epigenetic modifications to obtain better accuracy. We use a novel two-step multi-task learning method, task adaptive parameter sharing (TAPS), to efficiently predict enhancers in different cell types. We first train a shared model with all cell-type datasets. Then we adapt to specific tasks by adding several task-specific subset layers. Experiments demonstrate that HEAP outperforms published methods and showcases the effectiveness of the TAPS, especially for those with limited training samples. Notably, the explainable framework HEAP utilizes post-hoc interpretation to provide insights into the prediction mechanisms from three perspectives: data, model architecture and algorithm, leading to a better understanding of model decisions and enhancer grammar. To the best of our knowledge, HEAP will be a valuable tool for insight into the complex mechanisms of enhancer activity.


Assuntos
Aprendizado Profundo , Elementos Facilitadores Genéticos , Algoritmos , Sequência de Bases , Epigênese Genética
3.
Crit Rev Immunol ; 44(5): 113-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618733

RESUMO

Pneumonia is a common infection in elderly patients. We explored the correlations of serum interleukin-6 (IL-6) and serum ferritin (SF) levels with immune function/disease severity in elderly pneumonia patients. Subjects were allocated into the mild pneumonia (MP), severe pneumonia (SP), and normal groups, with their age/sex/body mass index/ disease course and severity/blood pressure/comorbidities/medications/prealbumin (PA)/albumin (ALB)/C-reactive protein (CRP)/procalcitonin (PCT)/smoking status documented. The disease severity was evaluated by pneumonia severity index (PSI). T helper 17 (Th17)/regulatory T (Treg) cell ratios and IL-6/SF/immunoglobulin G (IgG)/Th17 cytokine (IL-21)/Treg cytokine (IL-10)/PA/ALB levels were assessed. The correlations between these indexes/independent risk factors in elderly patients with severe pneumonia were evaluated. There were differences in smoking and CRP/PCT/ALB/PA levels among the three groups, but only CRP/ALB were different between the MP/SP groups. Pneumonia patients exhibited up-regulated Th17 cell ratio and serum IL-6/SF/IL-21/IL-10/IgG levels, down-regulated Treg cell ratio, and greater differences were noted in severe cases. Serum IL-6/SF levels were positively correlated with disease severity, immune function, and IL-21/IL-10/IgG levels. Collectively, serum IL-6 and SF levels in elderly pneumonia patients were conspicuously positively correlated with disease severity and IL-21/IL-10/IgG levels. CRP, ALB, IL-6 and SF levels were independent risk factors for severe pneumonia in elderly patients.


Assuntos
Interleucina-10 , Interleucina-6 , Idoso , Humanos , Citocinas , Ferritinas , Imunoglobulina G , Fatores de Risco
4.
Mol Ther ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256999

RESUMO

Cerebral reperfusion injury in stroke, stemming from interconnected thrombotic and inflammatory signatures, often involves platelet activation, aggregation and its interaction with various immune cells, contributing to microvascular dysfunction. However, the regulatory mechanisms behind this platelet activation and the resulting inflammation are not well understood, complicating the development of effective stroke therapies. Utilizing animal models and platelets from hemorrhagic stroke patients, our research demonstrates that human cerebral dopamine neurotrophic factor (CDNF) acts as an endogenous antagonist, mitigating platelet aggregation and associated neuroinflammation. CDNF moderates mitochondrial membrane potential, reactive oxygen species production, and intracellular calcium in activated platelets by interfering with GTP binding to Rap1b, thereby reducing Rap1b activation and downregulating the Rap1b-MAPK-PLA2 signaling pathway, which decreases release of the pro-inflammatory mediator thromboxane A2. In addition, CDNF reduces the inflammatory response in BV2 microglial cells co-cultured with activated platelets. Consistent with ex vivo findings, subcutaneous administration of CDNF in a rat model of ischemic stroke significantly reduces platelet activation, aggregation, lipid mediator production, infarct volume, and neurological deficits. In summary, our study highlights CDNF as a promising therapeutic target for mitigating platelet-induced inflammation and enhancing recovery in stroke. Harnessing the CDNF pathway may offer a novel therapeutic strategy for stroke intervention.

5.
Proc Natl Acad Sci U S A ; 119(26): e2122897119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35700355

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolves rapidly under the pressure of host immunity, as evidenced by waves of emerging variants despite effective vaccinations, highlighting the need for complementing antivirals. We report that targeting a pyrimidine synthesis enzyme restores inflammatory response and depletes the nucleotide pool to impede SARS-CoV-2 infection. SARS-CoV-2 deploys Nsp9 to activate carbamoyl-phosphate synthetase, aspartate transcarbamoylase, and dihydroorotase (CAD) that catalyzes the rate-limiting steps of the de novo pyrimidine synthesis. Activated CAD not only fuels de novo nucleotide synthesis but also deamidates RelA. While RelA deamidation shuts down NF-κB activation and subsequent inflammatory response, it up-regulates key glycolytic enzymes to promote aerobic glycolysis that provides metabolites for de novo nucleotide synthesis. A newly synthesized small-molecule inhibitor of CAD restores antiviral inflammatory response and depletes the pyrimidine pool, thus effectively impeding SARS-CoV-2 replication. Targeting an essential cellular metabolic enzyme thus offers an antiviral strategy that would be more refractory to SARS-CoV-2 genetic changes.


Assuntos
Antivirais , Aspartato Carbamoiltransferase , Tratamento Farmacológico da COVID-19 , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante) , Di-Hidro-Orotase , Inibidores Enzimáticos , Pirimidinas , SARS-CoV-2 , Replicação Viral , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Aspartato Carbamoiltransferase/antagonistas & inibidores , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/antagonistas & inibidores , Di-Hidro-Orotase/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Camundongos , Pirimidinas/antagonistas & inibidores , Pirimidinas/biossíntese , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Fator de Transcrição RelA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
6.
Nano Lett ; 24(17): 5206-5213, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647212

RESUMO

Single Atoms Catalysts (SACs) have emerged as a class of highly promising heterogeneous catalysts, where the traditional bottom-up synthesis approaches often encounter considerable challenges in relation to aggregation issues and poor stability. Consequently, achieving densely dispersed atomic species in a reliable and efficient manner remains a key focus in the field. Herein, we report a new facile electrochemical knock-down strategy for the formation of SACs, whereby the metal Zn clusters are transformed into single atoms. While a defect-rich substrate plays a pivotal role in capturing and stabilizing isolated Zn atoms, the feasibility of this novel strategy is demonstrated through a comprehensive investigation, combining experimental and theoretical studies. Furthermore, when studied in exploring for potential applications, the material prepared shows a remarkable improvement of 58.21% for the Li+ storage and delivers a capacity over 300 Wh kg-1 after 500 cycles upon the transformation of Zn clusters into single atoms.

7.
J Mol Cell Cardiol ; 195: 55-67, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39089571

RESUMO

Acute lung injury (ALI) including acute respiratory distress syndrome (ARDS) is a major complication and increase the mortality of patients with cardiac surgery. We previously found that the protein cargoes enriched in circulating extracellular vesicles (EVs) are closely associated with cardiopulmonary disease. We aimed to evaluate the implication of EVs on cardiac surgery-associated ALI/ARDS. The correlations between "oncoprotein-induced transcript 3 protein (OIT3) positive" circulating EVs and postoperative ARDS were assessed. The effects of OIT3-overexpressed EVs on the cardiopulmonary bypass (CPB) -induced ALI in vivo and inflammation of human bronchial epithelial cells (BEAS-2B) were detected. OIT3 enriched in circulating EVs is reduced after cardiac surgery with CPB, especially with postoperative ARDS. The "OIT3 positive" EVs negatively correlate with lung edema, hypoxemia and CPB time. The OIT3-overexpressed EVs can be absorbed by pulmonary epithelial cells and OIT3 transferred by EVs triggered K48- and K63-linked polyubiquitination to inactivate NOD-like receptor protein 3 (NLRP3) inflammasome, and restrains pro-inflammatory cytokines releasing and immune cells infiltration in lung tissues, contributing to the alleviation of CPB-induced ALI. Overexpression of OIT3 in human bronchial epithelial cells have similar results. OIT3 promotes the E3 ligase Cbl proto-oncogene B associated with NLRP3 to induce the ubiquitination of NLRP3. Immunofluorescence tests reveal that OIT3 is reduced in the generation from the liver sinusoids endothelial cells (LSECs) and secretion in liver-derived EVs after CPB. In conclusion, OIT3 enriched in EVs is a promising biomarker of postoperative ARDS and a therapeutic target for ALI after cardiac surgery.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ubiquitinação , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Animais , Masculino , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Camundongos , Inflamassomos/metabolismo , Proto-Oncogene Mas , Ponte Cardiopulmonar/efeitos adversos , Células Epiteliais/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/etiologia , Pulmão/metabolismo , Pulmão/patologia , Peptídeos e Proteínas de Sinalização Intracelular
8.
J Am Chem Soc ; 146(36): 25035-25046, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39213649

RESUMO

Graphene chemical vapor deposition (CVD) growth directly on target using substrates presents a significant route toward graphene applications. However, the substrates are usually catalytic-inert and special-shaped; thus, large-scale, high-uniformity, and high-quality graphene growth is challenging. Herein, graphene-skinned glass fiber fabric (GGFF) was developed through graphene CVD growth on glass fiber fabric, a Widely used engineering material. A fluid dynamics rectification strategy was first proposed to synergistically regulate the distribution of carbon species in 3D space and their collisions with hierarchical-structured substrates, through which highly uniform deposition of high-quality graphene on fibers in large-scale 3D-woven fabric was realized. This strategy is universal and applicable to CVD systems using various carbon precursors. GGFF exhibits high electrical conductivity and photothermal conversion capability, based on which a natural energy harvester was first developed. It can harvest both solar and raindrop energy through solar heating and droplet-based electricity generating, presenting promising potentials to alleviate energy burdens.

9.
J Am Chem Soc ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324666

RESUMO

Functional molecules derived from stereogenic phosphorus centers have important applications in the discovery of drugs and agrochemicals. They are also widely utilized as chiral ligands or organocatalysts for diverse asymmetric transformations. However, access to P-stereogenic motifs has always been regarded as a highly challenging yet desirable goal in organic synthesis. The development of general and practical methods for the stereoselective construction of synthetically versatile P(III)-stereogenic phosphines is particularly appealing but remains elusive. Herein, we describe a nickel-catalyzed asymmetric alkylation of primary phosphines with alkyl halides for the synthesis of P-stereogenic secondary phosphine-boranes with high enantioselectivity and broad substrate scope. The resulting optically active secondary phosphine-boranes allow for further stereospecific transformations, thereby establishing a modular and efficient platform for the diversity-oriented construction of P-stereogenic phosphine compounds.

10.
Mol Cancer ; 23(1): 27, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297362

RESUMO

BACKGROUND: Pancreatic cancer (PC) is an extremely malignant tumor with low survival rate. Effective biomarkers and therapeutic targets for PC are lacking. The roles of circular RNAs (circRNAs) in cancers have been explored in various studies, however more work is needed to understand the functional roles of specific circRNAs. In this study, we explore the specific role and mechanism of circ_0035435 (termed circCGNL1) in PC. METHODS: qRT-PCR analysis was performed to detect circCGNL1 expression, indicating circCGNL1 had low expression in PC cells and tissues. The function of circCGNL1 in PC progression was examined both in vitro and in vivo. circCGNL1-interacting proteins were identified by performing RNA pulldown, co-immunoprecipitation, GST-pulldown, and dual-luciferase reporter assays. RESULTS: Overexpressing circCGNL1 inhibited PC proliferation via promoting apoptosis. CircCGNL1 interacted with phosphatase nudix hydrolase 4 (NUDT4) to promote histone deacetylase 4 (HDAC4) dephosphorylation and subsequent HDAC4 nuclear translocation. Intranuclear HDAC4 mediated RUNX Family Transcription Factor 2 (RUNX2) deacetylation and thereby accelerating RUNX2 degradation. The transcription factor, RUNX2, inhibited guanidinoacetate N-methyltransferase (GAMT) expression. GAMT was further verified to induce PC cell apoptosis via AMPK-AKT-Bad signaling pathway. CONCLUSIONS: We discovered that circCGNL1 can interact with NUDT4 to enhance NUDT4-dependent HDAC4 dephosphorylation, subsequently activating HDAC4-RUNX2-GAMT-mediated apoptosis to suppress PC cell growth. These findings suggest new therapeutic targets for PC.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , RNA Circular/genética , Guanidinoacetato N-Metiltransferase , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fatores de Transcrição/genética , Neoplasias Pancreáticas/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Apoptose , MicroRNAs/genética , Proliferação de Células , Linhagem Celular Tumoral , Proteínas Repressoras
11.
Small ; 20(30): e2306877, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38415820

RESUMO

Complexation between oppositely charged polyelectrolytes offers a facile single-step strategy for assembling functional micro-nano carriers for efficient drug and vaccine delivery. However, the stability of the delivery system within the physiological environment is compromised due to the swelling of the polyelectrolyte complex, driven by the charge shielding effect, and consequently leads to uncontrollable burst release, thereby limiting its potential applications. In a pioneering approach, cellular pathway-inspired calcium carbonate precipitation pathways are developed that are integrated into polyelectrolyte capsules (MICPC). These innovative capsules are fabricated at the interface of all-aqueous microfluidic droplets, resulting in a precisely controllable and sustained release profile in physiological conditions. Unlike single-step polyelectrolyte assembly capsules which always perform rapid burst release, the MICPC exhibits a sustainable and tunable release pattern, releasing biomolecules at an average rate of 3-10% per day. Remarkably, the degree of control over MICPC's release kinetics can be finely tuned by adjusting the quantity of synthesized calcium carbonate particles within the polyelectrolyte complex. This groundbreaking work not only deepens the insights into polyelectrolyte complexation but also significantly enhances the overall stability of these complexes, opening up new avenues for expanding the range of applications involving polyelectrolyte complex-related materials.


Assuntos
Carbonato de Cálcio , Cápsulas , Polieletrólitos , Carbonato de Cálcio/química , Cápsulas/química , Polieletrólitos/química , Precipitação Química , Eletrólitos/química
12.
Small ; 20(20): e2308849, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38149507

RESUMO

All-solid-state batteries (ASSBs) represent a highly promising next-generation energy storage technology owing to their inherently high safety, device reliability, and potential for achieving high energy density in the post-ara of lithium-ion batteries, and therefore extensive searches are ongoing for ideal solid-state electrolytes (SSEs). Though promising, there is still a huge barrier that limits the large-scale applications of ASSBs, where there are a couple of bottleneck technical issues. In this perspective, a novel category of electrolytes known as frameworked electrolytes (FEs) are examined, where the solid frameworks are intentionally designed to contain 3D ionic channels at sub-nano scales, rendering them macroscopically solid. The distinctive structural design of FEs gives rise to not only high ionic conductivity but also desirable interfaces with electrode solids. This is achieved through the presence of sub-nano channels within the framework, which exhibit significantly different ion diffusion behavior due to the confinement effect. This perspective offers a compelling insight into the potential of FEs in the pursuit of ASSBs, where FEs offer an exciting opportunity to overcome the limitations of traditional solid-state electrolytes and propel the development of ASSBs as the holy grail of energy storage technology.

13.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856335

RESUMO

MOTIVATION: Multiple sequence alignment (MSA) is one of the hotspots of current research and is commonly used in sequence analysis scenarios. However, there is no lasting solution for MSA because it is a Nondeterministic Polynomially complete problem, and the existing methods still have room to improve the accuracy. RESULTS: We propose Deep reinforcement learning with Positional encoding and self-Attention for MSA, based on deep reinforcement learning, to enhance the accuracy of the alignment Specifically, inspired by the translation technique in natural language processing, we introduce self-attention and positional encoding to improve accuracy and reliability. Firstly, positional encoding encodes the position of the sequence to prevent the loss of nucleotide position information. Secondly, the self-attention model is used to extract the key features of the sequence. Then input the features into a multi-layer perceptron, which can calculate the insertion position of the gap according to the features. In addition, a novel reinforcement learning environment is designed to convert the classic progressive alignment into progressive column alignment, gradually generating each column's sub-alignment. Finally, merge the sub-alignment into the complete alignment. Extensive experiments based on several datasets validate our method's effectiveness for MSA, outperforming some state-of-the-art methods in terms of the Sum-of-pairs and Column scores. AVAILABILITY AND IMPLEMENTATION: The process is implemented in Python and available as open-source software from https://github.com/ZhangLab312/DPAMSA.


Assuntos
Algoritmos , Software , Alinhamento de Sequência , Reprodutibilidade dos Testes , Redes Neurais de Computação
14.
J Transl Med ; 22(1): 48, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216927

RESUMO

BACKGROUND: Muscle-invasive bladder cancer (MIBC) is a highly aggressive disease with a poor prognosis. B cells are crucial factors in tumor suppression, and tertiary lymphoid structures (TLSs) facilitate immune cell recruitment to the tumor microenvironment (TME). However, the function and mechanisms of tumor-infiltrating B cells and TLSs in MIBC need to be explored further. METHODS: We performed single-cell RNA sequencing analysis of 11,612 B cells and 55,392 T cells from 12 bladder cancer patients and found naïve B cells, proliferating B cells, plasma cells, interferon-stimulated B cells and germinal center-associated B cells, and described the phenotype, gene enrichment, cell-cell communication, biological processes. We utilized immunohistochemistry (IHC) and immunofluorescence (IF) to describe TLSs morphology in MIBC. RESULTS: The interferon-stimulated B-cell subtype (B-ISG15) and germinal center-associated B-cell subtypes (B-LMO2, B-STMN1) were significantly enriched in MIBC. TLSs in MIBC exhibited a distinct follicular structure characterized by a central region of B cells resembling a germinal center surrounded by T cells. CellChat analysis showed that CXCL13 + T cells play a pivotal role in recruiting CXCR5 + B cells. Cell migration experiments demonstrated the chemoattraction of CXCL13 toward CXCR5 + B cells. Importantly, the infiltration of the interferon-stimulated B-cell subtype and the presence of TLSs correlated with a more favorable prognosis in MIBC. CONCLUSIONS: The study revealed the heterogeneity of B-cell subtypes in MIBC and suggests a pivotal role of TLSs in MIBC outcomes. Our study provides novel insights that contribute to the precision treatment of MIBC.


Assuntos
Estruturas Linfoides Terciárias , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Linfócitos B , Prognóstico , Músculos/patologia , Interferons , Microambiente Tumoral
15.
Ann Surg Oncol ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287904

RESUMO

BACKGROUND: The leakage of saliva through the deep neck region from a pharyngocutaneous fistula could cause devastating complications, including vascular ruptures leading to mortality. While a partial pharyngoesophageal defect is created after total laryngectomy, a patch pattern of hypopharyngeal reconstruction is required, for which a fasciocutaneous free flap is usually applied. If radiotherapy fails to cure pharyngeal cancer, salvage total laryngectomy (STL) is needed. However, postradiation tissues tend not to heal well, and the incidence of pharyngocutaneous fistula therefore increases. We proposed an edge-epithelialization method to address this problem and conducted a retrospective study for comparison. METHODS: The inclusion criteria were patients with head and neck cancer who underwent total laryngectomy that immediately required patch free flap reconstruction at a single medical center (January 2012-December 2021). Receipt of presurgical radiotherapy, hospitalization duration, and the presence of postoperative complications were recorded. RESULTS: The included patients were separated into two groups: Group A (edge de-epithelialization not adopted) (n = 79) and Group B (edge de-epithelialization adopted) (n = 51). Forty-four and twenty-two patients in Groups A and Group B, respectively, received preoperative radiotherapies and simultaneous STL and fasciocutaneous free flap reconstructions. The incidence of pharyngocutaneous fistula was significantly lower in Group B (p = 0.0145). This phenomenon was the same for patients who underwent preoperative radiotherapy only (p = 0.0470) but not for patients who did not receive preoperative radiotherapy (p = 0.2363). CONCLUSIONS: Edge de-epithelialization is an effective method for reducing pharyngocutaneous fistula formation in patch free flap reconstructions after STLs.

16.
Opt Express ; 32(3): 3062-3075, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297537

RESUMO

The computation of electromagnetic wave scatterings of a layered sphere is a canonical problem. Lorentz-Mie theory is suitable for plane wave incidence whereas spherically layered media theory can deal with arbitrary incident waves. Both theories suffer from the notorious numerical instabilities due to the involved Bessel functions with large order, small argument or high loss. Logarithmic derivative method has been proposed to solve the numerical issues with these theories. In this paper, by employing the equivalence between the asymptotic formulas of Bessel functions for small argument and for large order, the numerical issues with the spherically layered theory under both large order case and small argument case can be solved in a unified manner by canceling out the diverging terms in the asymptotic formulas. The derived stable formulas are simpler and faster than those based on logarithmic derivative method. It is shown that the derived formulas are good approximations to the canonical ones but are more numerically stable. The large lossy issue can be solved similarly.

17.
Opt Lett ; 49(9): 2269-2272, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691696

RESUMO

We proposed spectrally temporally cascaded optical parametric amplification (STOPA) using pump energy recycling to simultaneously increase spectral bandwidth and conversion efficiency in optical parametric amplification (OPA). Using BiB3O6 and KTiOAsO4 nonlinear crystals, near-single-cycle mid-infrared (MIR) pulses with maximum energy conversion efficiencies exceeding 25% were obtained in simulations. We successfully demonstrated sub-two-cycle, CEP-stable pulse generation at 1.8 µm using a four-step STOPA system in the experiment. This method provides a solution to solve the limitations of the gain bandwidth of nonlinear crystals and the low conversion efficiency in broadband OPA systems, which is helpful for intense attosecond pulse generation and strong laser field physics studies.

18.
Opt Lett ; 49(13): 3737-3740, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950255

RESUMO

An approach for continuous tuning of on-chip optical delay with a microring resonator is proposed and demonstrated. By introducing an electro-optically tunable waveguide coupler, the bus waveguide to the resonance coupling can be effectively tuned from the under-coupling regime to the over-coupling regime. The optical delay is experimentally characterized by measuring the relative phase shift between lasers and shows a large dynamic range of delay from -600 to 600 ps and an efficient tuning of delay from -430 to -180 ps and from 40 to 240 ps by only a 5 V voltage.

19.
Chemistry ; 30(47): e202401591, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38844428

RESUMO

The Ni-catalyzed enantioselective addition reaction of aryl halides to aldehydes was studied with cyanobis(oxazoline) as chiral ligands and Mn as reductant. Aryl and heteroaryl bromides reacted with phenyl aldehyde at room temperature to produce dibenzyl alcohols in 16-99 % yields with 53-92 % ees. Moreover, the coupling of phenyl chloride with a variety of aryl, heteroaryl and alkyl aldehydes was demonstrated in the presence of cyanobis(oxazoline)/Ni(II) at 60 °C in generally high yields with moderate enantioselectivities.

20.
BMC Cancer ; 24(1): 630, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783240

RESUMO

BACKGROUND: Tumor morphology, immune function, inflammatory levels, and nutritional status play critical roles in the progression of intrahepatic cholangiocarcinoma (ICC). This multicenter study aimed to investigate the association between markers related to tumor morphology, immune function, inflammatory levels, and nutritional status with the prognosis of ICC patients. Additionally, a novel tumor morphology immune inflammatory nutritional score (TIIN score), integrating these factors was constructed. METHODS: A retrospective analysis was performed on 418 patients who underwent radical surgical resection and had postoperative pathological confirmation of ICC between January 2016 and January 2020 at three medical centers. The cohort was divided into a training set (n = 272) and a validation set (n = 146). The prognostic significance of 16 relevant markers was assessed, and the TIIN score was derived using LASSO regression. Subsequently, the TIIN-nomogram models for OS and RFS were developed based on the TIIN score and the results of multivariate analysis. The predictive performance of the TIIN-nomogram models was evaluated using ROC survival curves, calibration curves, and clinical decision curve analysis (DCA). RESULTS: The TIIN score, derived from albumin-to-alkaline phosphatase ratio (AAPR), albumin-globulin ratio (AGR), monocyte-to-lymphocyte ratio (MLR), and tumor burden score (TBS), effectively categorized patients into high-risk and low-risk groups using the optimal cutoff value. Compared to individual metrics, the TIIN score demonstrated superior predictive value for both OS and RFS. Furthermore, the TIIN score exhibited strong associations with clinical indicators including obstructive jaundice, CEA, CA19-9, Child-pugh grade, perineural invasion, and 8th edition AJCC N stage. Univariate and multivariate analysis confirmed the TIIN score as an independent risk factor for postoperative OS and RFS in ICC patients (p < 0.05). Notably, the TIIN-nomogram models for OS and RFS, constructed based on the multivariate analysis and incorporating the TIIN score, demonstrated excellent predictive ability for postoperative survival in ICC patients. CONCLUSION: The development and validation of the TIIN score, a comprehensive composite index incorporating tumor morphology, immune function, inflammatory level, and nutritional status, significantly contribute to the prognostic assessment of ICC patients. Furthermore, the successful application of the TIIN-nomogram prediction model underscores its potential as a valuable tool in guiding individualized treatment strategies for ICC patients. These findings emphasize the importance of personalized approaches in improving the clinical management and outcomes of ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Estado Nutricional , Humanos , Colangiocarcinoma/cirurgia , Colangiocarcinoma/patologia , Masculino , Feminino , Estudos Retrospectivos , Neoplasias dos Ductos Biliares/cirurgia , Neoplasias dos Ductos Biliares/patologia , Pessoa de Meia-Idade , Prognóstico , Idoso , Nomogramas , Inflamação , Biomarcadores Tumorais , Fosfatase Alcalina/sangue , Carga Tumoral , Avaliação Nutricional , Albumina Sérica/análise , Albumina Sérica/metabolismo , Curva ROC , Monócitos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA