Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(3): 871-884, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164043

RESUMO

Symbiotic nitrogen fixation (SNF) is a crucial process for nitrogen geochemical cycling and plant-microbe interactions. Water-soluble humic acid (WSHM), an active component of soil humus, has been shown to promote SNF in the legume-rhizobial symbiosis, but its molecular mechanism remains largely unknown. To reveal the SNF-promoting mechanism, we conducted transcriptomic analysis on soybean treated with WSHM. Our findings revealed that up- and downregulated differentially expressed genes (DEGs) were mainly involved in plant cell-wall/membrane formation and plant defence/immunity in the early stage, while the late stage was marked by the flavonoid synthesis and ethylene biosynthetic process. Further study on representative DEGs showed that WSHM could inhibit GmBAK1d-mediated immunity and BR signalling, thereby promoting rhizobial colonisation, infection, and nodulation, while not favoring pathogenic bacteria colonisation on the host plant. Additionally, we also found that the ethylene pathway is necessary for promoting the soybean nodulation by WSHM. This study not only provides a significant advance in our understanding of the molecular mechanism of WSHM in promoting SNF, but also provides evidence of the beneficial interactions among the biostimulator, host plant, and soil microbes, which have not been previously reported.


Assuntos
Glycine max , Rhizobium , Nodulação , Substâncias Húmicas , Fixação de Nitrogênio , Etilenos/metabolismo , Imunidade Vegetal , Simbiose , Nódulos Radiculares de Plantas/microbiologia
2.
Appl Microbiol Biotechnol ; 107(22): 6775-6788, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37715803

RESUMO

Andrimid is a potent antibiotic that inhibits acetyl-CoA carboxylase. However, its low biological yield and complex chemical synthesis have hindered its large-scale application. In this study, we found that the LysR-type transcriptional activator AdmX controls andrimid yield by adjusting its expression level in the andrimid-producing bacterium Erwinia persicina strain BST187. Our results showed that gradually increasing of admX transcriptional levels significantly improved andrimid yield, while the yield declined when admX was overexpressed excessively. To further estimate the effect of AdmX on andrimid promotion, we fitted and developed a model which was y = -0.5576x2 + 61.945x + 800.63 (R2 = 0.9591), where x represents the admX transcriptional level and y represents andrimid yield. Andrimid yield of admX overexpression strain BST187ΔadmX/pET28a-Pgap-1::admX was greatly improved by 260%, which was reported for the first time that andrimid yield could be promoted by genetic engineering. Thus, this study provides important insights that the biosynthesis of andrimid would be improved by bioengineering and sheds lights on the potential application of andrimid in both biomedicine and bioagricultural manipulation with its large-scale production in the future. KEY POINTS: • Andrimid production can be greatly promoted by genetic engineering on non-model chassis. • The relationship between AdmX abundance and andrimid yield in Erwinia persicina strain BST187 might be parabolic. • Erwinia persicina BST187 combined with chassis modification enable the promising applications in andrimid industrialization.

3.
Environ Res ; 211: 113023, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35276186

RESUMO

Temperature is a crucial factor affecting microalgae CO2 capture and utilization. However, an in-depth understanding of how microalgae respond to temperature stress is still unclear. In particular, the regulation mechanism under opposite temperature (heat and cold) stress had not yet been reported. In this study, the physicochemical properties and transcription level of related genes of microalgae Auxenochlorella protothecoides UTEX 2341 under heat and cold stress were investigated. Heat stress (Hs) caused a drastic increase of reactive oxygen species (ROS) in UTEX 2341. As key elements responded to Hs, superoxide dismutase (SOD) enzyme increased by 150%, 70%, and 30% in activity, and nitric oxide (NO) grew by 409.6%, 212.5%, and 990.4% in content compared with the control at 48 h, 96 h, 168 h. Under cold stress (Cs), ROS increased in the early stage and decreased in the later stage. As key factors responded to Cs, proline (Pro) increased respectively by 285%, 383%, and 81% in content, and heat shock transcriptional factor HSFA1d increased respectively by 161%, 71%, and 204% in transcript level compared with the control at 48 h, 96 h, 168 h. Furthermore, the transcript level of antioxidant enzymes or antioxidant coding genes was consistent with the changing trend of enzymes activity or antioxidant content. Notably, both glutathione (GSH) and heat shock protein 97 (hsp 97) were up-regulated in response to Hs and Cs. In conclusion, GSH and hsp 97 were the core elements of UTEX 2341 in response to both Hs and Cs. SOD and NO were the key elements that responded to Hs, while proline and HSFA1d were the key elements that responded to Cs. This study provided a basis for the understanding of the response mechanism of microalgae under temperature stress and the improvement of the microalgae tolerance to temperature stress.


Assuntos
Microalgas , Antioxidantes/metabolismo , Glutationa/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Microalgas/metabolismo , Estresse Oxidativo , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Superóxido Dismutase/metabolismo
4.
Environ Res ; 208: 112696, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35016864

RESUMO

Microalgae are the largest CO2 fixer and O2 producer on the earth and occupy an increasingly important position in human life and production. Various environmental factors have a significant impact on the growth and metabolism of microalgae. As global warming intensifies, heat stress has become a crucial factor affecting the microalgae industry. However, till now, it has not been clear how microalgae sensed the temperature stress, transmitted stress signals and adjusted in intracellular metabolic pathways. In this study, the growth of microalgae Auxenochlorella protothecoides UTEX2341 was inhibited at 32 °C, but the single cell dry weight increased. The cell component analyses showed that both the carbohydrate and total protein content decreased significantly, while the lipid content increased by 158%. Meanwhile, the intracellular Ca2+ concentration increased continuously, with a maximum increase of 1.65 times. According to the transcriptome analyses, the up-regulation of Ca2+ influx channel protein mid1-complementing activity 1 (MCA1) gene and the down-regulation of efflux channel protein cation exchanger 1(CAX) and autoinhibited Ca2+-ATPase 1 (ACA1) genes in cytoplasmic membrane jointly facilitated the increase of Ca2+ in the cytoplasm. Coexpression network analysis indicated that the fluctuation of Ca2+ in the cytoplasm could activate the expression of transcription factors MYB3 and AP2-4 through calmodulin (CAM) and calcium-dependent protein kinase (CDPK), and then regulate glycerol-3-phosphate acyltransferases (GPAT) at the beginning of TAG synthesis and diacylglycerol acyltransferase (DGAT)/phospholipid: diacylglycerol acyltransferase (PDAT) in the last step of TAG synthesis. Furthermore, the addition of Ca2+ specific chelator BAPTA-AM inhibited the expression of GPAT, which was consistent with the decrease in microalgae lipid content. The results proved that Ca2+ participated in the regulation of microalgae TAG synthesis under heat stress, which provided a new view for the understanding of the microalgae lipid accumulation mechanism.


Assuntos
Microalgas , Resposta ao Choque Térmico , Humanos , Metabolismo dos Lipídeos , Redes e Vias Metabólicas , Microalgas/metabolismo , Triglicerídeos/metabolismo
5.
J Evol Biol ; 34(10): 1514-1530, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473899

RESUMO

Microbial communities that inhabit the host's intestine influence many aspects of the host's health and bear the adaptive potential to alterations in harsh environments and diets. The Qinghai-Tibet Plateau represents one of the harshest environments in the world. Preliminary progress has been made in identifying the communities of gut microbes in Indigenous Tibetans and non-human animals. However, due to the complexity of microbial communities, the effects of gut microbes on the host's health and high-plateau adaptation remain unexplained. Herein, we review the latest progress in identifying factors affecting the gut microbiota of native Tibetans and non-human animals and highlight the complex interactions between the gut microbiota, health and highland adaptation, which provides a basis for exploring the correlations between the gut microbiota and clinical indexes in native highland residents and travellers, as well as developing microbiota-based strategies to mitigate health risks for tourists and treatments for mountain sickness during high-altitude travel in the future.


Assuntos
Microbioma Gastrointestinal , Aclimatação , Adaptação Fisiológica , Altitude , Animais , Tibet
6.
J Environ Sci (China) ; 108: 58-69, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34465437

RESUMO

Under ultra-high cadmium (Cd) stress, large amounts of glutathione are produced in Auxenochlorella protothecoides UTEX 2341, and the lipid content increases significantly. Glutathione is the best reductant that can effectively remove Cd, but the relationship between lipid accumulation and the cellular response to Cd stress has not been ascertained. Integrating analyses of the transcriptomes and lipidomes, the mechanism of lipid accumulation to Cd tolerance were studied from the perspectives of metabolism, transcriptional regulation and protein glutathionylation. Under Cd stress, basic metabolic pathways, such as purine metabolism, translation and pre-mRNA splicing process, were inhibited, while the lipid accumulation pathway was significantly activated. Further analysis revealed that the transcription factors (TFs) and genes related to lipid accumulation were also activated. Analysis of the TF interaction sites showed that ABI5, MYB_rel and NF-YB could further regulate the expression of diacylglycerol acyltransferase through glutathionylation/deglutathionylation, which led to increase of the triacylglycerol (TAG) content. Lipidomes analysis showed that TAG could help maintain lipid homeostasis by adjusting its saturation/unsaturation levels. This study for the first time indicated that glutathione could activate TAG synthesis in microalga A. protothecoides, leading to TAG accumulation and glutathione accumulation under Cd stress. Therefore, the accumulation of TAG and glutathione can confer resistance to high Cd stress. This study provided insights into a new operation mode of TAG accumulation under heavy metal stress.


Assuntos
Cádmio , Clorófitas , Cádmio/toxicidade , Glutationa , Lipídeos , Triglicerídeos
7.
Int J Mol Sci ; 21(2)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936000

RESUMO

Fermentable sugars are important intermediate products in the conversion of lignocellulosic biomass to biofuels and other value-added bio-products. The main bottlenecks limiting the production of fermentable sugars from lignocellulosic biomass are the high cost and the low saccharification efficiency of degradation enzymes. Herein, we report the secretome of Trichoderma harzianum EM0925 under induction of lignocellulose. Numerously and quantitatively balanced cellulases and hemicellulases, especially high levels of glycosidases, could be secreted by T. harzianum EM0925. Compared with the commercial enzyme preparations, the T. harzianum EM0925 enzyme cocktail presented significantly higher lignocellulolytic enzyme activities and hydrolysis efficiency against lignocellulosic biomass. Moreover, 100% yields of glucose and xylose were obtained simultaneously from ultrafine grinding and alkali pretreated corn stover. These findings demonstrate a natural cellulases and hemicellulases mixture for complete conversion of biomass polysaccharide, suggesting T. harzianum EM0925 enzymes have great potential for industrial applications.


Assuntos
Celulase/metabolismo , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Trichoderma/enzimologia , Biocombustíveis/microbiologia , Fermentação , Glucose/metabolismo , Hidrólise , Trichoderma/metabolismo , Xilose/metabolismo , Zea mays/metabolismo
8.
Entropy (Basel) ; 22(7)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33286563

RESUMO

Millions of Android applications (apps) are widely used today. Meanwhile, the number of malicious apps has increased exponentially. Currently, there are many security detection technologies for Android apps, such as static detection and dynamic detection. However, the uncertainty of the features in detection is not considered sufficiently in these technologies. Permissions play an important role in the security detection of Android apps. In this paper, a malicious application detection model based on features uncertainty (MADFU) is proposed. MADFU uses logistic regression function to describe the input (permissions) and output (labels) relationship. Moreover, it uses the Markov chain Monte Carlo (MCMC) algorithm to solve features' uncertainty. After experimenting with 2037 samples, for malware detection, MADFU achieves an accuracy of up to 95.5%, and the false positive rate (FPR) is 1.2%. MADFU's Android app detection accuracy is higher than the accuracy of directly using 24 dangerous permission. The results also indicate that the method for an unknown/new sample's detection accuracy is 92.7%. Compared to other state-of-the-art approaches, the proposed method is more effective and efficient, by detecting malware.

9.
Microb Cell Fact ; 18(1): 159, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31542050

RESUMO

BACKGROUND: Xylanases randomly cleave the internal ß-1,4-glycosidic bonds in the xylan backbone and are grouped into different families in the carbohydrate-active enzyme (CAZy) database. Although multiple xylanases are detected in single strains of many filamentous fungi, no study has been reported on the composition, synergistic effect, and mode of action in a complete set of xylanases secreted by the same microorganism. RESULTS: All three xylanases secreted by Penicillium chrysogenum P33 were expressed and characterized. The enzymes Xyl1 and Xyl3 belong to the GH10 family and Xyl3 contains a CBM1 domain at its C-terminal, whereas Xyl2 belongs to the GH11 family. The optimal temperature/pH values were 35 °C/6.0, 50 °C/5.0 and 55 °C/6.0 for Xyl1, Xyl2, and Xyl3, respectively. The three xylanases exhibited synergistic effects, with the maximum synergy observed between Xyl3 and Xyl2, which are from different families. The synergy between xylanases could also improve the hydrolysis of cellulase (C), with the maximum amount of reducing sugars (5.68 mg/mL) observed using the combination of C + Xyl2 + Xyl3. Although the enzymatic activity of Xyl1 toward xylan was low, it was shown to be capable of hydrolyzing xylooligosaccharides into xylose. Xyl2 was shown to hydrolyze xylan to long-chain xylooligosaccharides, whereas Xyl3 hydrolyzed xylan to xylooligosaccharides with a lower degree of polymerization. CONCLUSIONS: Synergistic effect exists among different xylanases, and it was higher between xylanases from different families. The cooperation of hydrolysis modes comprised the primary mechanism for the observed synergy between different xylanases. This study demonstrated, for the first time, that the hydrolysates of GH11 xylanases can be further hydrolyzed by GH10 xylanases, but not vice versa.


Assuntos
Endo-1,4-beta-Xilanases/metabolismo , Proteínas Fúngicas/metabolismo , Penicillium chrysogenum/enzimologia , Polissacarídeos/metabolismo , Biocatálise , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glucuronatos/metabolismo , Temperatura Alta , Hidrólise , Família Multigênica , Oligossacarídeos/metabolismo , Penicillium chrysogenum/química , Penicillium chrysogenum/genética , Domínios Proteicos , Xilanos/metabolismo
10.
J Environ Manage ; 216: 62-69, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28958462

RESUMO

A composted material derived from biogas production residues, spent mushroom substrate (SMS) and pig manure was evaluated as a partial or total replacement for peat in growth medium for tomato and pepper seedlings. Five different substrates were tested: T1, compost + perlite (5:1, v:v); T2, compost + peat + perlite (4:1:1, v:v:v); T3, compost + peat + perlite (2.5:2.5:1, v:v:v); T4, compost + peat + perlite (1:4:1, v:v:v); and CK, a commercial peat + perlite (5:1, v:v). The physical-chemical characteristics of the various media were analyzed, and the germination rate and morphological growth were also measured. Real-time Quantitative PCR (qPCR) was used to quantify Fusarium concentrations. The addition of compost to peat-based growth medium increased the pH, electrical conductivity, air porosity, bulk density, and nutrition (NPK), and decreased the water holding capacity and total porosity. The use of compost did not affect the percent germination at day 15 of the tomato and pepper seedlings. The addition of compost resulted in better or comparable seedling quality compared with CK and fertilized CK. The best growth parameters were seen in tomato and pepper seedlings grown in T1 and T2, with higher morphological growth in comparison with CK and fertilized CK. However, T2 showed the highest Fusarium concentration compared to compost and all growth media. Fusarium concentrations in T1, T3, and T4 did not differ significantly from those in CK for tomato seedlings, and those in T1 and T4 were also similar to those in CK for pepper seedlings. The results suggest that biogas residues and SMS compost is a good alternative to peat, allowing 100% replacement, and that 20-50% replacement produces tomato and pepper seedlings with higher morphological growth and lower Fusarium concentrations.


Assuntos
Agaricales , Biocombustíveis , Solanum lycopersicum , Animais , Plântula , Solo , Suínos
11.
Appl Environ Microbiol ; 83(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28500045

RESUMO

The capability of biofilm formation has a major impact on the industrial and biotechnological applications of Shewanella putrefaciens CN32. However, the detailed regulatory mechanisms underlying biofilm formation in this strain remain largely unknown. In the present report, we describe a three-component regulatory system which negatively regulates the biofilm formation of S. putrefaciens CN32. This system consists of a histidine kinase LrbS (Sputcn32_0303) and two cognate response regulators, including a transcription factor, LrbA (Sputcn32_0304), and a phosphodiesterase, LrbR (Sputcn32_0305). LrbS responds to the signal of the carbon source sodium lactate and subsequently activates LrbA. The activated LrbA then promotes the expression of lrbR, the gene for the other response regulator. The bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) phosphodiesterase LrbR, containing an EAL domain, decreases the concentration of intracellular c-di-GMP, thereby negatively regulating biofilm formation. In summary, the carbon source sodium lactate acts as a signal molecule that regulates biofilm formation via a three-component regulatory system (LrbS-LrbA-LrbR) in S. putrefaciens CN32.IMPORTANCE Biofilm formation is a significant capability used by some bacteria to survive in adverse environments. Numerous environmental factors can affect biofilm formation through different signal transduction pathways. Carbon sources are critical nutrients for bacterial growth, and their concentrations and types significantly influence the biomass and structure of biofilms. However, knowledge about the underlying mechanism of biofilm formation regulation by carbon source is still limited. This work elucidates a modulation pattern of biofilm formation negatively regulated by sodium lactate as a carbon source via a three-component regulatory system in S. putrefaciens CN32, which may serve as a good example for studying how the carbon sources impact biofilm development in other bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Shewanella putrefaciens/efeitos dos fármacos , Shewanella putrefaciens/fisiologia , Lactato de Sódio/farmacologia , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Histidina Quinase/genética , Diester Fosfórico Hidrolases/genética , Shewanella putrefaciens/genética , Fatores de Transcrição/genética
12.
Microb Cell Fact ; 16(1): 166, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28950907

RESUMO

BACKGROUND: Xylan, the major constituent of hemicellulose, is composed of ß-(1,4)-linked xylopyranosyl units that for the backbone, with side chains formed by other chemical moieties such as arabinose, galactose, mannose, ferulic acid and acetyl groups. Acetyl xylan esterases and α-L-arabinofuranosidases are two important accessory enzymes that remove side chain residues from xylan backbones and may act in synergy with other xylanolytic enzymes. Compared with enzymes possessing a single catalytic activity, multifunctional enzymes can achieve lignocellulosic biomass hydrolysis using a less complex mixture of enzymes. RESULTS: Here, we cloned an acetyl xylan esterase (PcAxe) from Penicillium chrysogenum P33 and expressed it in Pichia pastoris GS115. The optimal pH and temperature of the recombinant PcAxe (rPcAxe) for 4-nitrophenyl acetate were 7.0 and 40 °C, respectively. rPcAxe is stable across a broad pH range, retaining 100% enzyme activity om pH 6-9 after a 1 h incubation. The enzyme tolerates the presence of a wide range of metal ions. Sequence alignment revealed a GH62 domain exhibiting α-L-arabinofuranosidase activity with pH and temperature optima of pH 7.0 and 50 °C, in addition to the expected esterase domain. rPcAxe displayed significant synergy with a recombinant xylanase, with a degree of synergy of 1.35 for the hydrolysis of delignified corn stover. Release of glucose was increased by 51% from delignified corn stover when 2 mg of a commercial cellulase was replaced by an equivalent amount of rPcAxe, indicating superior hydrolytic efficiency. CONCLUSIONS: The novel bifunctional enzyme PcAxe was identified in P. chrysogenum P33. rPcAxe includes a carbohydrate esterase domain and a glycosyl hydrolase family 62 domain. This is the first detailed report on a novel bifunctional enzyme possessing acetyl xylan esterase and α-L-arabinofuranosidase activities. These findings expand our current knowledge of glycoside hydrolases and pave the way for the discovery of similar novel enzymes.


Assuntos
Acetilesterase/metabolismo , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Penicillium chrysogenum/enzimologia , Acetilesterase/química , Acetilesterase/genética , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise , Penicillium chrysogenum/química , Penicillium chrysogenum/genética , Penicillium chrysogenum/metabolismo , Especificidade por Substrato
13.
J Environ Sci (China) ; 55: 33-40, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28477828

RESUMO

Airborne bacteria were measured when a dust storm passed Beijing in spring 2012 with a focus on cell concentration, viability and TSA- and R2A-cultured strain composition. The concentration varied at an order of 107cells/m3 with dust loading (demonstrated with PM10) and they had a very close correlation (RT2=0.91, p<0.01). At the time of highest PM10 of 652µg/m3, the bacterial concentration reached 1.4×108cells/m3, which was larger than that before and after the dust event by one order. Bacterial viability, the ratio of number concentration of viable cells to total cells, was 32%-64% and smaller in the dust plume than that before the dust arrival. Bacterial strains from the culture ranged between 2.5×104 and 4.6×105CFU/m3 and no correlation with PM10 was determined. Their composition was different before and after the dust arrival according to 16S rRNA gene sequences and strains belong to Actinomycetes and Firmicutes were the majority in the dust samples.


Assuntos
Microbiologia do Ar , Poluentes Atmosféricos/análise , Bactérias/classificação , Monitoramento Ambiental , Bactérias/genética , Bactérias/isolamento & purificação , Pequim , Material Particulado/análise
14.
Microb Ecol ; 72(3): 538-48, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27324653

RESUMO

Butane oxidation by the hydrocarbon degradation bacteria has long been described, but little is known about the microbial interaction in this process. To investigate this interaction, the efficiency of butane oxidation was estimated in monocultures and co-cultures of six strains of butane-oxidizing bacteria (BOB) and a butanol-oxidizing strain. Results showed that the butane degradation velocity was at least 26 times higher in the co-culture of the seven strains (228.50 nmol h(-1)) than in the six individual monocultures (8.71 nmol h(-1)). Gas chromatographic analysis of metabolites in the cultures revealed the accumulation of butanol in the monocultures of BOB strains but not in the co-culture with the butanol-oxidizing strain. These results evidenced a novel syntrophic association between BOB and butanol-oxidizing bacteria in the butane oxidation. The BOB strains oxidized butane into butanol, but this activity was inhibited by the accumulated butanol in monocultures, whereas the removal of butanol by the butanol-oxidizing strain in co-culture could eliminate the suppression and improve the butane degradation efficiency. In the co-culture, both BOB and butanol-oxidizing bacteria could grow and the time needed for butane complete removal was shortened from more than 192 h to less than 4 h. The unsuppressed effect of the co-culture was also consistent with the results of reverse transcription quantitative real-time PCR (RT-qPCR) of bmoX gene because increased expression of this gene was detected during the syntrophic growth compared with that in monoculture, pointing to the upregulation of bmoX in the syntrophic interaction.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Butanos/metabolismo , Consórcios Microbianos , Campos de Petróleo e Gás/microbiologia , Oxirredução , Bactérias/crescimento & desenvolvimento , Carga Bacteriana , Proteínas de Bactérias/genética , Sequência de Bases , Butanos/análise , Butanóis/análise , Butanóis/metabolismo , China , Cromatografia Gasosa/métodos , Técnicas de Cocultura , DNA Bacteriano , Genes Bacterianos/genética , Redes e Vias Metabólicas , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Microbiologia do Solo , Fatores de Tempo
15.
Bioorg Med Chem ; 24(8): 1589-97, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27010500

RESUMO

A series of N,N-3-phenyl-3-benzylaminopropanamide derivatives were identified as novel CETP (cholesteryl ester transfer protein) inhibitors. In our previous study, lead compound L10 was discovered by pharmacophore-based virtual screening (Dong-Mei Zhao et al., 2014). Based on L10 (IC50 8.06 µM), compound HL6 (IC50 10.7 µM) was discovered following systematic structure variation and biological tests. Further optimization of the structure-activity relationship (SAR) resulted in N,N-3-phenyl-3-benzylaminopro panamides derivatives as novel CETP inhibitors. They were synthesized and evaluated against CETP by BODIPY-CE fluorescence assay. Among them, HL16 (IC50 0.69 µM) was a highly potent CETP inhibitor in vitro. In addition, HL16 exhibited favorable HDL-C enhancement and LDL-C reduction in vivo by hamster. The molecular docking of HL16 into the CETP was performed. The binding mode demonstrated that HL16 occupied the CETP binding site and formed interactions with the key amino acid residues.


Assuntos
Benzilaminas/farmacologia , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Desenho de Fármacos , Propano/análogos & derivados , Administração Oral , Animais , Benzilaminas/administração & dosagem , Benzilaminas/química , Cricetinae , Relação Dose-Resposta a Droga , Humanos , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Propano/administração & dosagem , Propano/química , Propano/farmacologia , Relação Estrutura-Atividade
16.
Antonie Van Leeuwenhoek ; 108(1): 51-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25912732

RESUMO

A Gram-negative, non-motive, aerobic and non-spore-forming strain 16-28-2(T) isolated from freshwater sediment of Taihu Lake was characterized by using a polyphasic approach. The optimum growth conditions were found to be as follows: 28 °C, pH 6.5 and 0-0.5 % NaCl in YG liquid medium. The major fatty acids were identified to be summed feature 3 (consisting of C16:1 ω7c and/or C16:1 ω6c), summed feature 8 (consisting of C18:1 ω7c and/or C18:1 ω6c), C14:0 2-OH, C17:1 ω6c, C16:0 and C18:1 ω7c 11-methyl (>5 %). Strain 16-28-2(T) was found to contain diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and sphingoglycolipid as the major polar lipids; and ubiquinone 10 (Q-10) as the major respiratory quinone. DNA G+C content of strain 16-28-2(T) was 63.5 mol % (Tm). A phylogenetic study of 16S rRNA gene indicated that strain 16-28-2(T) is a member of the genus Novosphingobium, with the highest 16S rRNA gene sequence similarity of 96.3 % with Novosphingobium lentum MT1(T) and below 96 % with the other Novosphingobium species. On the basis of the phylogenetic, phenotypic analyses and biochemical characterization, we suggest that strain 16-28-2(T) is a novel species in the genus Novosphingobium, for which the name Novosphingobium tardum sp. nov. is proposed. The type strain of N. tardum is 16-28-2(T) (=CGMCC 1.12989(T) =NBRC 110956(T)).


Assuntos
Sedimentos Geológicos/microbiologia , Sphingomonadaceae/classificação , Sphingomonadaceae/isolamento & purificação , Aerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Água Doce , Glicolipídeos/análise , Concentração de Íons de Hidrogênio , Lagos , Dados de Sequência Molecular , Fosfolipídeos/análise , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/fisiologia , Temperatura
17.
World J Microbiol Biotechnol ; 31(12): 1983-91, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26395638

RESUMO

Stevioside is a non-caloric, natural, high-intensity sweetener. However, the bitter aftertaste of stevioside restricts its utilization for human consumption and limits its application in the food industry. In this study, a high efficiency enzymatic modification system was investigated to improve stevioside taste quality. A cyclodextrin glucanotransferase (CGTase) producing strain Paenibacillus sp. CGMCC 5316 was isolated from Stevia planting soil. With starch as glycosyl donor, this CGTase can transform stevioside into a single specific product which is an isomer of rebaudioside A and identified as mono-glycosylated stevioside. The taste of stevioside is improved noticeably by generating mono-glycosylated stevioside, which possesses a sucrose-like taste and has sweetness increased significantly by 35.4%. Next, the parameters influencing CGTase production were optimized. Compared to initial conditions, CGTase activity increased by 214.7% under optimum conditions of 3.9 g/L starch, 17.9 g/L tryptone, and 67.6 h of culture time, and the transglycosylation rate of stevioside was remarkably increased by 284.8%, reaching 85.6%. This CGTase modification system provides a promising solution for improving the sweetness and taste quality of stevioside. The efficiency of CGTase transformation can be greatly increased by optimizing the culture conditions of Paenibacillus sp. CGMCC 5316.


Assuntos
Diterpenos do Tipo Caurano/metabolismo , Glucosídeos/metabolismo , Glucosiltransferases/metabolismo , Paenibacillus/enzimologia , Cromatografia Líquida de Alta Pressão , Diterpenos do Tipo Caurano/química , Glucosídeos/química , Glucosiltransferases/biossíntese , Glicosilação , Espectrometria de Massas , Paenibacillus/isolamento & purificação , Paenibacillus/metabolismo , Amido/química , Amido/metabolismo , Edulcorantes/química , Edulcorantes/metabolismo
18.
World J Microbiol Biotechnol ; 31(6): 883-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25772498

RESUMO

To investigate the temporal variation of the sediment prokaryote communities and their relation with the rapid increase of algae population in Taihu, a shallow eutrophic freshwater Lake, water and surface sediments were sampled from seven sites in different stages of algal bloom. The physicochemical characterization revealed positive correlations among the nutrient (N, P) parameters in the water and sediments, as well as TN/TP ratio 30.79 in average in water and 0.13 in sediments, demonstrating that P content was the limit factor for bloom in Taihu and sediment was an important nutrient resource for the water body. T-RFLP analysis of 16S rRNA genes revealed a diversity decrease of sediment prokaryotic communities along the bloom. The bacterial communities in sediments were more sensitive and shaped by the temporal changes, while archaea were more sensitive to the trophic level. The pyrosequencing data showed clear spatial and temporal changes in diversity of sediment bacteria. Betaproteobacteria was the most abundant group in all the samples, following by Delta-, Gama- and Alpha-proteobacteria, Acidobacteria, Chlorobi, Chloroflexi etc. At the genus level, Thiobacillus and Sulfuricurvum were the most dominant groups in the sediments, and the increase of Thiobacillus abundance in February might be used as bioindicator for the subsequent bloom. In addition, NO3 (-)-N was evidenced to be the main factor to regulate the bacterial community structure in the sediments. These results offered some novel and important data for the evaluation and predict the algal bloom in Taihu and can be reference for other shallow fresh water lakes.


Assuntos
Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Lagos , Archaea/genética , Bactérias/genética , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eutrofização , Água Doce/química , Dados de Sequência Molecular , Nitrogênio/análise , Fósforo/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Environ Microbiome ; 19(1): 2, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178261

RESUMO

BACKGROUND: As part of the plant microbiome, endophytic bacteria play an essential role in plant growth and resistance to stress. Water-soluble humic materials (WSHM) is widely used in sustainable agriculture as a natural and non-polluting plant growth regulator to promote the growth of plants and beneficial bacteria. However, the mechanisms of WSHM to promote plant growth and the evidence for commensal endophytic bacteria interaction with their host remain largely unknown. Here, 16S rRNA gene sequencing, transcriptomic analysis, and culture-based methods were used to reveal the underlying mechanisms. RESULTS: WSHM reduced the alpha diversity of soybean endophytic bacteria, but increased the bacterial interactions and further selectively enriched the potentially beneficial bacteria. Meanwhile, WSHM regulated the expression of various genes related to the MAPK signaling pathway, plant-pathogen interaction, hormone signal transduction, and synthetic pathways in soybean root. Omics integration analysis showed that Sphingobium was the genus closest to the significantly changed genes in WSHM treatment. The inoculation of endophytic Sphingobium sp. TBBS4 isolated from soybean significantly improved soybean nodulation and growth by increasing della gene expression and reducing ethylene release. CONCLUSION: All the results revealed that WSHM promotes soybean nodulation and growth by selectively regulating soybean gene expression and regulating the endophytic bacterial community, Sphingobium was the key bacterium involved in plant-microbe interaction. These findings refined our understanding of the mechanism of WSHM promoting soybean nodulation and growth and provided novel evidence for plant-endophyte interaction.

20.
J Agric Food Chem ; 72(12): 6133-6142, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38489511

RESUMO

Fulvic acid (FA) promotes symbiosis between legumes and rhizobia. To elucidate from the aspect of symbiosis, the effects of root irrigation of water-soluble humic materials (WSHM) or foliar spraying of its highly active component, FA, on soybean root exudates and on rhizosphere microorganisms were investigated. As a result, WSHM/FA treatments significantly altered root exudate metabolite composition, and isoflavonoids were identified as key contributors in both treatments compared to the control. Increased expression of genes related to the isoflavonoid biosynthesis were validated by RT-qPCR in both treatments, which notably elevated the synthesis of symbiotic signals genistein, daidzin, coumestrol, and biochanin A. Moreover, the WSHM/FA treatments induced a change in rhizosphere microbial community, coupled with an increase in the relative abundance of rhizobia. Our findings showed that WSHM/FA promotes symbiosis by stimulating the endogenous flavonoid synthesis and leads to rhizobia accumulation in the rhizosphere. This study provides new insights into mechanisms underlying the FA-mediated promotion of symbiosis.


Assuntos
Benzopiranos , Fabaceae , Rhizobium , Simbiose/genética , Glycine max , Verduras , Fixação de Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA