Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Exp Cell Res ; 435(1): 113905, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163563

RESUMO

The development of sepsis can lead to many organ dysfunction and even death. Myocardial injury is one of the serious complications of sepsis leading to death. New evidence suggests that microRNAs (miRNAs) play a critical role in infection myocardial injury. However, the mechanism which miR-208a-5p regulates sepsis-induced myocardial injury remains unclear. To mimic sepsis-induced myocardial injury in vitro, rat primary cardiomyocytes were treated with LPS. Cell viability and apoptosis were tested by CCK-8 and flow cytometry, respectively. The secretion of inflammatory factors was analyzed by ELISA. mRNA and protein levels were detected by RT-qPCR and Western blotting. The interaction among SP1, XIAP and miR-208a-5p was detected using dual luciferase report assay. Ultrasonic analysis and HE staining was performed to observe the effect of miR-208a-5p in sepsis-induced rats. Our findings indicated that miR-208a-5p expression in primary rat cardiomyocytes was increased by LPS. MiR-208a-5p inhibitor reversed LPS-induced cardiomyocytes injury through inhibiting the apoptosis. Furthermore, the inflammatory injury in cardiomyocytes was induced by LPS, which was rescued by miR-208a-5p inhibitor. In addition, downregulation of miR-208a-5p improved LPS-induced sepsis myocardial injury in vivo. Mechanistically, XIAP might be a target gene of miR-208a-5p. SP1 promoted transcription of miR-208a by binding to the miR-208a promoter region. Moreover, silencing of XIAP reversed the regulatory of miR-208a-5p inhibitor on cardiomyocytes injury. To sum up, those findings revealed silencing of miR-208a-5p could alleviate sepsis-induced myocardial injury, which would grant a new process for the treatment of sepsis.


Assuntos
MicroRNAs , Sepse , Animais , Ratos , Apoptose , Lipopolissacarídeos/farmacologia , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Sepse/complicações , Sepse/genética , Sepse/metabolismo , Fator de Transcrição Sp1
2.
Ren Fail ; 46(1): 2286330, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38390733

RESUMO

PURPOSE: To investigate the preventive effect of aerobic exercise on renal damage caused by obesity. METHODS: The mice in the Control (Con) and Control + Exercise (Con + Ex) groups received a standard chow diet for the 21-week duration of the study, while the High-fat diet (HFD) group and High-fat diet + Exercise (HFD + Ex) group were fed an HFD. Mice were acclimated to the laboratory for 1 week, given 12 weeks of being on their respective diets, and then the Con + Ex and HFD + Ex groups were subjected to moderate intensity aerobic treadmill running 45 min/day, 5 days/week for 8 weeks. RESULTS: We found that HFD-induced obesity mainly impacts kidney glycerin phospholipids, glycerides, and fatty acyls, and aerobic exercise mainly impacts kidney glycerides, amino acids and organic acids as well as their derivatives. We identified 18 metabolites with significantly altered levels that appear to be involved in aerobic exercise mediated prevention of HFD-induced obesity and renal damage, half of which were amino acids and organic acids and their derivatives. CONCLUSION: Aerobic exercise rewires kidney metabolites to reduce high-fat diet-induced obesity and renal injury.


Assuntos
Dieta Hiperlipídica , Condicionamento Físico Animal , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Obesidade/etiologia , Obesidade/prevenção & controle , Rim/metabolismo , Glicerídeos , Aminoácidos , Camundongos Endogâmicos C57BL
3.
ACS Cent Sci ; 10(5): 1094-1104, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38799669

RESUMO

In this study, an innovative approach is presented in the field of engineered plant living materials (EPLMs), leveraging a sophisticated interplay between synthetic biology and engineering. We detail a 3D bioprinting technique for the precise spatial patterning and genetic transformation of the tobacco BY-2 cell line within custom-engineered granular hydrogel scaffolds. Our methodology involves the integration of biocompatible hydrogel microparticles (HMPs) primed for 3D bioprinting with Agrobacterium tumefaciens capable of plant cell transfection, serving as the backbone for the simultaneous growth and transformation of tobacco BY-2 cells. This system facilitates the concurrent growth and genetic modification of tobacco BY-2 cells within our specially designed scaffolds. These scaffolds enable the cells to develop into predefined patterns while remaining conducive to the uptake of exogenous DNA. We showcase the versatility of this technology by fabricating EPLMs with unique structural and functional properties, exemplified by EPLMs exhibiting distinct pigmentation patterns. These patterns are achieved through the integration of the betalain biosynthetic pathway into tobacco BY-2 cells. Overall, our study represents a groundbreaking shift in the convergence of materials science and plant synthetic biology, offering promising avenues for the evolution of sustainable, adaptive, and responsive living material systems.

4.
Turk J Pediatr ; 65(6): 964-972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38204311

RESUMO

BACKGROUND: Early diagnosis of pediatric sepsis is difficult, so it is necessary to find a reliable auxiliary diagnostic method. The purpose of the study was to assess the role of RDW in the diagnosis of pediatric sepsis. METHODS: We did a case control study reviewing pediatric inpatients (≥28 days, < 18 years old) who were diagnosed with sepsis between April 2020 and November 2022. According to the sepsis-3 and Pediatric Sequential Organ Failure Assessment (pSOFA) scoring standards, 66 septic inpatients of the pediatric intensive care unit (PICU) were included in the sepsis group and 66 non-septic inpatients of the PICU were included by using the random sampling method during the same period as the control group. RESULTS: RDW values in the sepsis group were higher than those in the control group (P < 0.001). The cut-off value, sensitivity, specificity and area under curve of RDW for sepsis were 39.15, 0.955, 0.758 and 0.943,respectively. CONCLUSIONS: Our study confirms that RDW may have a good value on the early diagnosis of pediatric sepsis.


Assuntos
Sepse , Humanos , Criança , Adolescente , Estudos de Casos e Controles , Sepse/diagnóstico , Unidades de Terapia Intensiva Pediátrica , Eritrócitos
5.
Expert Rev Vaccines ; 22(1): 1079-1090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877219

RESUMO

BACKGROUND: Because SARS-CoV-2 mutations and immunity wane over time, a third dose of heterologous COVID-19 vaccine is proposed for individuals primed with inactivated COVID-19 vaccine. RESEARCH DESIGN AND METHODS: We conducted a single-center, open-label trial to assess the safety, immunogenicity, and immune-persistence of a heterologous BBIBP-CorV/ZF2001 prime-boost vaccination in Chinese adults. 480 participants who had been primed with two doses of BBIBP-CorV, received a third dose of ZF2001 after an interval of 3-4, 5-6, or 7-9 months. RESULTS: The overall incidence of adverse reactions within 30 days after vaccination was 5.83%. No serious adverse reactions were reported. The respective geometric mean titers (GMTs) of neutralizing antibodies for 3-4, 5-6, and 7-9 months groups at baseline were 2.06, 2.02, and 2.10; which increased to 55.42, 63.45, and 62.06 on day 14; then decreased to 17.53, 23.79, and 26.73 on day 30; before finally waning to 8.29, 9.24, and 9.51 on day 180. After the booster, the three groups showed no significant differences in GMTs. GMTs were lower in older participants than younger participants. CONCLUSIONS: A heterologous BBIBP-CorV/ZF2001 prime-boost vaccination was safe and immunogenic. Prime-boost intervals did not affect the immune response. The immune response was weaker in older adults than younger adults. CLINICAL TRIAL IDENTIFIER: NCT05205083.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Idoso , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Imunização , Imunogenicidade da Vacina , SARS-CoV-2 , Vacinação
6.
ACS Appl Mater Interfaces ; 15(1): 591-598, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36542734

RESUMO

Encoded microparticles (EMPs) have shown demonstrative value for multiplexed high-throughput bioassays such as drug discovery and diagnostics. Herein, we propose for the first time the incorporation of thermally activated delayed fluorescence (TADF) dyes with low-cost, heavy metal-free, and long-lived luminescence properties into polymer matrices via a microfluidic droplet-facilitated assembly technique. Benefiting from the uniform droplet template sizes and polymer-encapsulated structures, the resulting composite EMPs are highly monodispersed, efficiently shield TADF dyes from singlet oxygen, well preserve TADF emission, and greatly increase the delayed fluorescence lifetime. Furthermore, by combining with phase separation of polymer blends in the drying droplets, TADF dyes with distinct luminescent colors can be spatially separated within each EMP. It eliminates optical signal interference and generates multiple fluorescence colors in a compact system. Additionally, in vitro studies reveal that the resulting EMPs show good biocompatibility and allow cells to adhere and grow on the surface, thereby making them promising optically EMPs for biolabeling.


Assuntos
Micropartículas Derivadas de Células , Corantes Fluorescentes , Luminescência , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA