Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Environ Manage ; 361: 121268, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38820787

RESUMO

Carbon dioxide (CO2) production and emissions from inland waters play considerable roles in global atmospheric CO2 sources, while there are still uncertainties regarding notable nutrient inputs and anthropogenic activities. Urban inland waters, with frequently anthropogenic modifications and severely nitrogen loadings, were hotspots for CO2 emissions. Here, we investigated the spatiotemporal patterns of partial pressure of CO2 (pCO2) and CO2 fluxes (FCO2) in typical urban inland waters in Tianjin, China. Our observation indicated that pCO2 values were oversaturated in highly polluted waters, particularly in sewage rivers and urban rivers, exhibiting approximately 9 times higher than the atmosphere equilibrium concentration during sampling campaigns. Obviously, the spatiotemporal distributions of pCO2 and FCO2 emphasized that the water environmental conditions and anthropogenic activities jointly adjusted primary productivity and biological respiration of inland waters. Meanwhile, statistically positive correlations between pCO2/FCO2 and NH4+-N/NO3--N (p < 0.05) suggested that nitrogen biogeochemical processes, especially the nitrification, played a dominant role in CO2 emissions attributing to the water acidification that stimulated CO2 production and emissions. Except for slight CO2 sinks in waters with low organic contents, the total CO2 emissions from the urban surface waters of Tianjin were remarkable (286.8 Gg yr-1). The results emphasized that the reductions of nitrogen loadings, sewage draining waters, and agricultural pollution could alleviate CO2 emissions from urban inland waters.


Assuntos
Dióxido de Carbono , Nitrogênio , Dióxido de Carbono/análise , Nitrogênio/análise , Monitoramento Ambiental , China , Rios/química
2.
Environ Sci Technol ; 57(33): 12546-12555, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37535944

RESUMO

Microbially mediated nitrate reduction coupled with Fe(II) oxidation (NRFO) plays an important role in the Fe/N interactions in pH-neutral anoxic environments. However, the relative contributions of the chemical and microbial processes to NRFO are still unclear. In this study, N-O isotope fractionation during NRFO was investigated. The ratios of O and N isotope enrichment factors (18ε:15ε)-NO3- indicated that the main nitrate reductase functioning in Acidovorax sp. strain BoFeN1 was membrane-bound dissimilatory nitrate reductase (Nar). N-O isotope fractionation during chemodenitrification [Fe(II) + NO2-], microbial nitrite reduction (cells + NO2-), and the coupled process [cells + NO2- + Fe(II)] was explored. The ratios of (18ε:15ε)-NO2- were 0.58 ± 0.05 during chemodenitrification and -0.41 ± 0.11 during microbial nitrite reduction, indicating that N-O isotopes can be used to distinguish chemical from biological reactions. The (18ε:15ε)-NO2- of 0.70 ± 0.05 during the coupled process was close to that obtained for chemodenitrification, indicating that chemodenitrification played a more important role than biological reactions during the coupled process. The results of kinetic modeling showed that the relative contribution of chemodenitrification was 99.3% during the coupled process, which was consistent with that of isotope fractionation. This study provides a better understanding of chemical and biological mechanisms of NRFO using N-O isotopes and kinetic modeling.


Assuntos
Comamonadaceae , Nitratos , Nitritos , Dióxido de Nitrogênio , Oxirredução , Compostos Orgânicos , Isótopos , Compostos Ferrosos
3.
J Environ Manage ; 337: 117751, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36933532

RESUMO

Karst groundwater provides drinking water for a quarter of Earth's population. However, in intensive agricultural regions worldwide, karst water is commonly polluted by nitrate (NO3-), particularly in the valley depression areas with well hydrological connectivity. The valley depression aquifers are particularly vulnerable to anthropogenic pollution because their pipes and sinkholes respond quickly to rainfall events and anthropogenic inputs. Identifying nitrate sources and transport paths in the valley depression areas is key to understanding the nitrogen cycle and effectively preventing and controlling NO3- pollution. This study collected high-resolution samples at four sites including one surface stream-SS, two sinkholes-SH and reservoir-Re, during the wet season in the headwater sub-catchment. The chemical component concentrations and stable isotopes (δ15N-NO3- and δ18O-NO3-) were analyzed. The stable isotope analysis model in R language (SIAR) was used to quantitatively analyze the contribution rate of NO3- sources. The results showed that the down section site (Re) has the highest [NO3--N], followed by SH and the lowest SS. The sources calculation of SIAR demonstrated that, during the non-rainfall period, soil organic nitrogen was the primary source of the down section site, followed by fertilizer and the upper reaches sinkholes. During the rainfall period, fertilizer was the primary source of the down section site, followed by soil organic nitrogen and from upper reaches sinkholes. Rainfall events accelerated fertilizer-leaching into the groundwater. Slight denitrification may have occurred at the sampling sites but the assimilation of Re and SH could not occur. In conclusion, agricultural activities were still the primary influencing factor of [NO3--N] in the study area. Therefore, the focus of NO3- prevention and control in the valley depression areas should consider the methods and timing of fertilization and the spatial distribution of sinkholes. To reduce nitrogen flux in the valley depression area, effective management policy should consider, e.g., prolongation of water residence time by wetland, and blocking nitrogen loss paths by sinkholes.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Nitrogênio/análise , Isótopos de Nitrogênio/análise , Nitratos/análise , Fertilizantes/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Solo , China
4.
Molecules ; 26(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401378

RESUMO

Lignin is the second most abundant natural biopolymer, which is a potential alternative to conventional fossil fuels. It is also a promising material for the recovery of valuable chemicals such as aromatic compounds as well as an important biomarker for terrestrial organic matter. Lignin is currently produced in large quantities as a by-product of chemical pulping and cellulosic ethanol processes. Consequently, analytical methods are required to assess the content of valuable chemicals contained in these complex lignin wastes. This review is devoted to the application of mass spectrometry, including data analysis strategies, for the elemental and structural elucidation of lignin products. We describe and critically evaluate how these methods have contributed to progress and trends in the utilization of lignin in chemical synthesis, materials, energy, and geochemistry.


Assuntos
Lignina/química , Espectrometria de Massas
5.
Sci Total Environ ; 912: 169289, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38135069

RESUMO

Accurate prediction of dissolved oxygen (DO) dynamics is crucial for understanding the influence of environmental factors on the stability of aquatic ecosystem. However, limited research has been conducted to determine the optimal frequency of water quality monitoring that ensures continuous assessment of water health while minimizing costs. To address these challenges, the present study developed a hybrid stochastic hydrological model (i.e., ARIMA-GARCH hybrid model) and machine learning (ML) models. The objective of this study is to identify the best-performing model and establish the optimal monitoring frequency. Results revealed that high-frequency DO monitoring data exhibit greater variability compared to low-frequency data. Moreover, the ARIMA-GARCH model demonstrates promising potential in predicting DO concentrations for low-frequency monitoring data, surpassing ML models in performance. Furthermore, increasing the monitoring frequency significantly improves the prediction accuracy of models, regardless of whether point (with lower R2 values of 0.64 and 0.51 for daily detection than these of every 15 min (0.96 and 0.99) at CHQ and LHT, respectively) or interval predictions (with RIW higher values of 2.00 and 1.55 for daily detection higher than these of 0.02 and 0.16 in every 15 min at CHQ and LHT, respectively) are considered. Additionally, a 4 hourly monitoring frequency was found to be optimal for water quality assessment using each model. These findings identify the superior performing of the ARIMA-GARCH model and highlight the crucial role of monitoring frequency in enhancing DO prediction and improving model performance.

6.
Sci Total Environ ; 923: 171417, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447725

RESUMO

The water-level fluctuations zones (WLFZs) are crucial transitional interfaces within river-reservoir systems, serving as hotspots for N2O emission. However, the comprehension of response patterns and mechanisms governing N2O emission under hydrological fluctuation remains limited, especially in karstic canyon reservoirs, which introduces significant uncertainty to N2O flux assessments. Soil samples were collected from the WLFZs of the Hongjiadu (HJD) Reservoir along the water flow direction from transition zone (T1 and T2) to lacustrine zone (T3, T4 and T5) at three elevations for each site. These soil columns were used to conduct simulation experiments under various water-filled pore space gradients (WFPSs) to investigate the potential N2O flux pattern and elucidate the underlying mechanism. Our results showed that nutrient distribution and N2O flux pattern differed significantly between two zones, with the highest N2O fluxes in the transition zone sites and lacustrine zone sites were found at 75 % and 95 % WFPS, respectively. Soil nutrient loss in lower elevation areas is influenced by prolonged impoundment durations. The higher N2O fluxes in the lacustrine zone can be attributed to increased nutrient levels resulting from anthropogenic activities. Furthermore, correlation analysis revealed that soil bulk density significantly impacted N2O fluxes across all sites, while NO3-and SOC facilitated N2O emissions in T1-T2 and T4-T5, respectively. It was evident that N2O production primarily contributed to nitrification in the transition zone and was constrained by the mineralization process, whereas denitrification dominated in the lacustrine zone. Notably, the annual N2O efflux from WLFZs accounted for 27 % of that from the water-air interface in HJD Reservoir, indicating a considerably lower contribution than anticipated. Nevertheless, this study highlights the significance of WLFZs as a vital potential source of N2O emission, particularly under the influence of anthropogenic activities and high WFPS gradient.

7.
Sci Total Environ ; 946: 174090, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914338

RESUMO

Dissolved organic carbon (DOC) and discharge are often tightly coupled, though these relationships in karst environments remain poorly constrained. In this study, DOC dynamics over 13 hydrological events, alongside monthly monitoring over an entire hydrological year were monitored in a small karst catchment, SW China. The concurrent analyses of power-law model and hysteresis patterns reveal that DOC behavior is generally transport-limited due to flushing effects of increased discharge but highly variable at both intra- and inter-event scales. The initial discharge at event onset and discharge-weighted mean concentration of DOC ([DOC]DW) of individual events can explain 37.7 % and 19.9 % of the variance of DOC behavior among events, respectively. The sustained dry-cold antecedent conditions make DOC hysteresis behavior during the earliest event complex and different from subsequent events. At event scale, the variability in DOC export is primarily controlled by [DOC]DW (explaining 64.3 %) and the yield of total dissolved solutes (YTDS, explaining 30.4 %), reflecting the impacts of variable hydrological connectivity and intense soil-water-rock interactions in this karst catchment. On an annual scale, DOC yield (YDOC, 222.86 kg C km-2) was mostly derived during the wet season (98.19 %) under the hydrological driving force. The difference in annual YDOC between this karst catchment and other regions can be well explained by annual water yield (Ywater, explaining 24.2 %) and [DOC] (explaining 35.4 %), whereas the variance in DOC export efficiency among catchments is almost exclusively controlled by [DOC] alone, independent of drainage area and annual Ywater. This study highlights the necessity of high-frequency sampling for modeling carbon biogeochemical processes and the particularity of the earliest hydrological events occurred after a long cold-dry period in karst catchments. Under the changing climate, whether DOC dynamics in karst catchments will present source-limited patterns during more extreme hydrological events merits further study.

8.
Sci Total Environ ; 931: 172924, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697550

RESUMO

The water quality in the drinking water reservoir directly affects people's quality of life and health. When external pollution input is effectively controlled, endogenous release is considered the main cause of water quality deterioration. As the major nitrogen (N) and phosphorus (P) sources in reservoirs, sediment plays a vital role in affecting the water quality. To understand the spatial and temporal variation of N and P in the sediment, this study analyzed the current characteristics and cumulative effects of a semi-humid reservoir, Yuqiao Reservoir, in North China. The N and P concentrations in the reservoir sediment were decreased along the flow direction, while the minimum values were recorded at the central sediment profile. External input and algal deposition were the main factors leading to higher sediment concentrations in the east (Re-E) and west (Re-W) areas of reservoir sediment profiles. According to the long-term datasets, the peaks of both sediment total nitrogen content and deposition rate were observed in the 2010s, which has increased about three times and six times than in the1990s, respectively. Therefore, the increase in phosphorus concentration may be the main reason for eutrophication in water in recent years. The mineralization of organic matter has a significant promoting effect on releasing N and P from sediments, which will intensify eutrophication in water dominated by P and bring huge challenges to water environment management. This study highlights that the current imbalance in N and P inputs into reservoirs and the endogenous P release from sediment will have a significant impact on water quality.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36767800

RESUMO

It is important to explore characteristics of dissolved organic matter (DOM) in the riverine system due to its critical role in the carbon cycle. This study investigated the distribution characteristics and sources of DOM based on excitation emission matrix three-dimensional fluorescence technology and parallel factor (EEM-PARAFAC) analysis at two rivers in northern China strongly impacted by human activities. The results show that the fluorescence intensity of terrestrial humic-like substances increased during summer in Haihe River. The intensity was significantly higher than in spring due to terrestrial detritus from runoff conveyance. The fluorescence intensity of protein-like substances in spring was the highest and decreased in summer. This feature of DOM in the Duliujian River was related to the increase in precipitation and surface runoff in the wet season and the rapid degradation of mixed DOM in the dry season. An analysis of HIX, BIX and FI showed a low degree of DOM humification and more endogenous contributions from microbial and phytoplankton degradation. Seasonal variations of dissolved organic carbon (DOC) and chromophoric DOM (CDOM, a335, thereinto C1) suggest that chromophores, particularly terrestrial substances, regulate the temporal patterns of DOM in the two rivers. Combined with the analysis of the proportion of land use types in riparian buffers, tillage had a great impact on DOM content and hydrophobicity in Haihe River watershed. Domestic wastewater and industrial sewage discharge contribute more DOM to Duliujian River watershed, which was indicated by more abundant protein-like components (212.17 ± 94.63 QSU in Duliujian River;186.59 ± 238.72 QSU in Haihe River). This study highlights that different land use types resulted in distinctive sources and seasonal dynamics of DOM in rivers. Meanwhile, it should be considered that the estimation of carbon cycling should involve monitoring and evaluating anthropogenic inputs into rivers.


Assuntos
Matéria Orgânica Dissolvida , Rios , Humanos , Águas Residuárias , Esgotos , China , Substâncias Húmicas/análise , Espectrometria de Fluorescência
10.
Sci Total Environ ; 903: 166206, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567291

RESUMO

The coastal zone exhibited a high population density with highly impacted by anthropogenic activities, such as river impoundment to prevent saline intrusion, which resulted in weak hydrological conditions. Rainfall events can result in dramatic changes in hydrological and nutrient transportation conditions, especially in rivers with weak hydrological conditions. However, how the nitrogen transport and N2O emissions or biogeochemistry responds to the different types of rainfall events in the weak hydrodynamics rivers is poorly understood. In this study, the hydrological, nitrogenous characteristic, as well as N2O dynamics, were studied by high-frequency water sampling during two distinct rainfall events, high-intensity with short duration (E1) and low-intensity with long duration (E2). The results displayed that the hydrologic condition in E1 with a wider range of d-excess values (from -9.50 to 32.1 ‰), were more dynamic than those observed in E2. The N2O concentrations (0.01-3.33 µmol/L) were higher during E1 compared to E2 (0.03-1.11 µmol/L), which indicated that high-intensity rainfall has a greater potential for N2O emission. On the contrary, the concentrations of nitrogen (e.g., TN and NO3--N) were lower during E1 compared to E2. Additionally, hysteresis was observed in both water and nitrogen components, resulting in a prolonged recovery time for pre-rainfall levels during the long-duration event. Moreover, the results showed that the higher average N2O flux (78.3 µmol/m2/h) in the rainfall event period was much larger than that in the non-rainfall period (1.63 µmol/m2/h). The frequency dam regulation resulted in the water level fluctuation, which could enhance wet-dry alternation and simulated N2O emissions. This study highlighted the characteristic of N dynamic and hydrological responses to diverse rainfall events occurrences in the coastal river. Rainfall could increase the N2O emission, especially during high-intensity rainfall events, which cannot be ignored in the context of annual N2O release.

11.
Environ Sci Pollut Res Int ; 30(9): 24718-24728, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36346527

RESUMO

Due to the excessive exploitation of traditional energy sources, the attention paid to water energy has increased in recent years. As an important means to effectively utilize water energy, reservoirs play an important role in drinking water, irrigation, flood control, and drought resistance. However, utilizing reservoirs often led to water quality issues resulting from the interaction of nutrients and hydrological conditions, especially due to the special structure of karst areas. Because of the change of hydrological conditions by the effect of dam construction, the dynamic of water quality will be more obvious in karst areas with a fast exchange of water and contaminants between underground and surface streams. In the present study, the change in water quality of a karst reservoir, the Muzhu Reservoir in the Houzhai Catchment, was studied. Long-term monitored datasets (1981-2002) and water quality datasets of more recent years were used to assess the effect on the water quality of reservoir expansion from the underground reservoir to the surface reservoir in a karst area. Long-term series datasets had shown that the hydro-chemistry type had been changed from HCO3-·SO42--Ca2+·Mg2+ type to HCO3--Ca2+ type in the short term after the reservoir's expansion. The chemical components of water originating from a rock background reduced markedly after the reservoir's expansion, whereas the content of the anthropogenic contribution in the water decreased after the expansion, except in April and May. Isotopic characteristics showed that δ15N-NO3- and δ18O-NO3- values were positively correlated before and after the reservoir expansion, but the slope of the linear regression before the expansion was 0.34, while the slope of the linear regression before the expansion was close to 0.7. This indicated that although denitrification and assimilation may occur simultaneously after the reservoir's expansion, the role of denitrification on nitrate removal decreased, which resulted in nitrate accumulation in the karst reservoir. The results highlighted that nitrate accumulation in karst reservoirs should be monitored to decrease nitrate concentration in the future.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Qualidade da Água , Nitratos/análise , Monitoramento Ambiental/métodos , Água Subterrânea/química , China , Poluentes Químicos da Água/análise
12.
Water Res ; 231: 119616, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696876

RESUMO

Karst terrain seasonal monsoonal rainfall is often associated with high concentrations of nitrate-N in streams draining agricultural land. Such high concentrations can pose problems for environmental and human health. However, the relationship between rainfall events that mobilize nitrate and resulting nitrate export remains poorly understood in karst terrain. To better understand the processes that drive nitrate dynamics during rainfall events, the characteristics of individual rainfall events were analyzed using sensor technology. Thirty-eight rainfall events were separated from the high-frequency dataset spanning 19 months at a karst spring site. The results revealed that nitrate-discharge (N-Q) hysteresis in 79% of rainfall events showed anticlockwise hysteresis loop patterns, indicating nitrate export from long distances within short event periods. Karstic hydrological connectivity and source availability were considered two major determining factors of N-Q hysteresis. Gradual increase in hydrological connectivity during intensive rainfall period accelerated nitrate transportation by karst aquifer systems. Four principal components (PCs, including antecedent conditions PC1&3 and rainfall characteristics PC2&4 explained 82% of the cumulative variance contribution to the rainfall events. Multiple linear regression of four PCs explained more than 50% of the variation of nitrate loading and amplitude during rainfall events, but poorly described nitrate concentrations and hydro-chemistry parameters, which may be influenced by other factors, e.g., nitrate transformation, fertilization time and water-rock interaction. Although variation of N concentration during event flow is evident, accounting for antecedent conditions and rainfall factors can help to predict rainfall event N loading during rainfall events. Pollution of the karstic catchment occurred by a flush of nitrate input following rainfall events; antecedent and rainfall conditions are therefore important factors to consider for the water quality management. Reducing source availability during the wet season may facilitate to reduction of nitrogen loading in similar karst areas.


Assuntos
Água Subterrânea , Nitratos , Humanos , Nitratos/análise , Monitoramento Ambiental/métodos , Agricultura , Qualidade da Água
13.
Artigo em Inglês | MEDLINE | ID: mdl-36078673

RESUMO

The impact of rainfall on water quality may be more important in semi-arid regions, where rainfall is concentrated over a couple of months. To explore the impact of rainfall changes on water quality, e.g., nitrogen (TN) and phosphorous (TP), the diversion from Luan River to Tianjin Watershed in the northern semi-humid area was selected as the study area. TN and TP concentrations in rivers and the Yuqiao Reservoir during the three-year high-flow season (2019-2021) were analyzed. The response relationship and influencing factors among the watershed's biogeochemical process, rainfall, and water quality were clarified. The results showed that rainfall in the high flow season mainly controlled the river flow. The concentration of TN and TP in the inflow rivers is regulated by rainfall/flow, while the concentration of TN and TP in the water diversion river has different variation characteristics in the water diversion period and other periods. The lowest annual concentrations of TN and TP were observed in the normal year, while the highest annual concentration was observed in the wet year, indicating that the hydrological process drove the nutrient transport in the watershed. For the tributaries, the Li River catchment contributed a large amount of N and P to the aquatic environment. For the reservoir, the extreme TN concentrations were the same as the tributaries, while the extremes of TP concentrations decreased from the dry year to wet year, which was in contrast to the tributaries. The spatial variation of TN and TP concentrations in the reservoir showed that the concentration decreased following the flow direction from the river estuary to the reservoir outlet. Considering climate change, with the increase of rainfall in North China in the future, the TN and TP transport fluxes in the watershed may continue to increase, leading to the nitrogen and phosphorus load of the downstream reservoir. To ensure the impact of the increase of potential N and P output fluxes in the watershed on the water quality of the reservoir area, it is necessary to strengthen the effective prevention and control of non-point source pollution in the watershed.


Assuntos
Fósforo , Poluentes Químicos da Água , China , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise
14.
Sci Total Environ ; 818: 151727, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34800464

RESUMO

Although numerous studies focused on nitrate source, transformation and transport of river water in karst area have been reported, it's still unclear in understanding nitrate main source and transformation in karst groundwater system and how nitrate transport from soil to water during rainfall events in karst critical zone. In order to explore the response and transport of nitrate in karst groundwater to rainfall events, different depths of well water before, during and after rainfall event were sampled, and hillslope runoff, surface runoff of different land-use types during rainfall event were sampled synchronously at a typical karst agricultural catchment in Southwest China. Results showed that fluctuations of EC, pH and DO in deep borehole well (W1) and artesian well (W2) were small, on the contrary, variations of EC and DO in shallow well (W3) were large during sampling period. The nitrate concentrations and isotopic values indicated that nitrate in karst groundwater mainly originated from chemical fertilizer (CF), and influenced by denitrification process. High intensity of denitrification was observed in deep groundwater (87%) and artesian well water (almost 100%). Extremely high dual nitrate isotope values up to 46.8 ± 1.5‰ and 24.7 ± 0.5‰ were found in the deep artesian well. The small variation of water chemistry (EC, DO and pH), nitrate concentration and dual nitrate isotope values in deep wells during sampling period suggested that newly supplied nitrogen in deep groundwater during rainfall events also comes from deep groundwater. Low nitrogen concentrations in hillslope subsurface flow and surface runoff suggests that nitrogen transport process leading to increase of water nitrogen content mainly occur in depression. Nitrogen in depression soil is mainly transported to groundwater through fissures, fractures and conduits, rather than through vertical migration processes in the soil during rainfall events.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , China , Monitoramento Ambiental/métodos , Água Subterrânea/química , Nitratos/análise , Nitrogênio/análise , Poluentes Químicos da Água/análise
15.
Sci Total Environ ; 852: 158569, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36075433

RESUMO

The pollution risks due to the soil migration of toxic metal(loid)s (TMs) are a greatly hazard to ecological environment as well as animal and human health. Previous studies have primarily focused on surface contamination while deep soil layers often contain dangerous levels of TMs. We used restored wheat and rice farmlands from aquaculture ponds as a case study to examine the ecological risk and distribution of TMs in soil profiles. The elements Cu, Zn, Cr, Cd, Hg and As were markedly enriched in the 60-180 cm soil layers of restored farmland, and their concentrations decreased in the several depths as follows: 120-180 cm > 60-120 cm > 0-60 cm. Concentrations of TMs were 9.5-128 % greater in the restored farmlands relative to farmlands not exposed to aquaculture practices. Cadmium and mercury were the most serious contaminants and increased the overall ecological risk. The subsoil of wheat farming system had the highest pollution risk versus the restored rice farmland at 60-120 cm due to elevated levels of Cu, Zn and Pb. Toxic metal(loid)s might be derived from natural sources in deep soil of conventional farmland whereas aquaculture practices were found to constitute the major contribution in the subsoil of restored farmland. Our results indicated that the TMs that were buried in deep soil layers migrated upward and were a significant pollution risk. Urgent actions should be taken to identify and alleviate the contamination sources of these deep soils in addition to the conventional leaching and migration processes of surface contaminants.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Humanos , Solo , Fazendas , Metais Pesados/análise , Poluentes do Solo/análise , Cádmio , Lagoas , Chumbo , Monitoramento Ambiental , Medição de Risco , Aquicultura , China
16.
Sci Total Environ ; 768: 144343, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33736336

RESUMO

Sulfuric acid formed by pyrite oxidation and nitric acid formed by oxidation of reducing nitrogen fertilizer through neutralization with carbonate minerals can rapidly perturb the carbon cycle. However, these processes and corresponding mechanisms have not been well documented due to the lack of information about both the sources of acids and the processes of oxidative weathering. Here, multiple isotopes (13C-DIC, 34S and 18O-SO42-, 15N and 18O-NO3-, and 18O and D-H2O), hydrochemistry and historical monitoring data were used to assess the roles of strong acids in chemical weathering and the carbon cycle in a karst river system. The variations in alkalinity and the δ13C-DIC signals, along with theoretical mixing models, indicated that strong acids were involved in carbonate weathering. However, the contribution of weathering driven by strong acids to the total weathering budget determined by mixing models was lower than that determined by assuming that all protons were neutralized by minerals. These protons were liberated from oxidation of pyrite and reducing nitrogen fertilizers constrained by isotope techniques and hydrochemistry with the use of a Bayesian isotope mixing model. The strong acid weathering could account for 66% of total weathering if all of the protons were neutralized by carbonate and silicate, which was not consistent with the result provided by mixing models. These results indicated that in addition to being neutralized by minerals, the protons might be largely neutralized by HCO3- derived from rock weathering driven by both carbonic and strong acids. The coupling cycles of carbon, nitrogen and sulfur would be boosted due to oxidation of pyrite and reducing nitrogen fertilizers. This study suggests that the CO2 uptake by terrestrial chemical weathering should be re-evaluated after adequately considering the effects of strong acids liberated by natural processes and anthropogenic activities.

17.
Environ Sci Pollut Res Int ; 28(21): 26617-26627, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33492596

RESUMO

The increase of affected river reaches by reservoirs has drastically disturbed the original hydrological conditions, and subsequently influenced the nutrient biogeochemistry in the aquatic system, particularly in the cascade reservoir system. To understand the seasonal variation of nitrogen (N) behaviors in cascade reservoirs, hydrochemistry and nitrate dual isotopes (δ15N-NO3- and δ18O-NO3-) were conducted in a karst watershed (Wujiang River) in southwest China. The results showed that NO3--N accounted for almost 90% of the total dissolved nitrogen (TDN) concentration with high average concentration 3.8 ± 0.4 mg/L among four cascade reservoirs. Higher N concentration (4.0 ± 0.8 mg/L) and larger longitudinal variation were observed in summer than in other seasons. The relationship between the variation of NO3--N and dual isotopes in the profiles demonstrated that nitrification was dominated transformation, while assimilation contributed significantly in the epilimnion during spring and summer. The high dissolved oxygen concentration in the present cascade reservoirs system prevented the occurrence of N depletion processes in most of the reservoirs. Denitrification occurred in the oldest reservoir during winter with a rate ranging from 18 to 28%. The long-term record of surface water TDN concentration in reservoirs demonstrated an increase from 2.0 to 3.6 mg/L during the past two decades (~ 0.1 mg/L per year). The seasonal nitrate isotopic signature and continuously increased fertilizer application demonstrated that chemical fertilizer contribution significantly influenced NO3--N concentration in the karst cascade reservoirs. The research highlighted that the notable N increase in karst cascade reservoirs could influence the aquatic health in the region and further investigations were required.


Assuntos
Nitratos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Nitratos/análise , Nitrogênio/análise , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , Rios , Estações do Ano , Poluentes Químicos da Água/análise
18.
Sci Total Environ ; 760: 143377, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33198994

RESUMO

The production of fluorescent dissolved organic matter (FDOM) by phytoplankton and its subsequent degradation, both of which occur constantly under diurnal-day time sunlight and by night time dark-microbial respiration processes in the upper layer of surface waters, influence markedly several biogeochemical processes and functions in aquatic environments and can be feasibly related to global warming (GW). In this work sunlight-mediated high-temperature was shown to accelerate the production of FDOM, but also its complete disappearance over a 24-h diurnal period in July at the highest air and water temperatures (respectively, 41.1 and 33.5 °C), differently from lower temperature months. Extracellular polymeric substances (EPS), an early-state DOM, were produced by phytoplankton in July in the early morning (6:00-9:00), then they were degraded into four FDOM components over midday (10:00-15:00), which was followed by simultaneous production and almost complete degradation of FDOM with reformation of EPS during the night (2:00-6:00). Such transformations occurred simultaneously with the fluctuating production of nutrients, dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and the two isotopes (δ15N and δ18O) of NO3-. It was estimated that complete degradation of FDOM in July was associated with mineralization of approximately 15% of the initial DOC, which showed a nighttime minimum (00:00) in comparison to a maximum at 13:00. FDOM identified by excitation-emission matrix spectroscopy combined with parallel factor analysis consisted of EPS, autochthonous humic-like substances (AHLS) of C- and M-types, a combined form of C- and M-types of AHLS, protein-like substances (PLS), newly-released PLS, tryptophan-like substances, tyrosine-like substances (TYLS), a combined form of TYLS and phenylalanine-like substances (PALS), and their degradation products. Finally, stepwise degradation and production processes are synthesized in a pathway for FDOM components production and their subsequent transformation under different diurnal temperature conditions, which provided a broader paradigm for future impacts on GW-mediated DOM dynamics in lake water.

19.
Anal Sci Adv ; 2(5-6): 272-278, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38716153

RESUMO

Mass resolving power is one of the key features of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), which enables the molecular characterization of complex mixtures. Quadrupole (2ω) detection provides a significant step forward in FT-ICR MS performance, as it doubles the resolving power for a given signal acquisition time. Whether this 2ω detection technique truly substitutes for a higher magnetic field remains unknown however. In this study, a residue oil sample was characterized using both a 2ω 7 Tesla FT-ICR and a 15 Tesla FT-ICR instrument, and analytical figures of merit were systematically compared. It was shown that 2ω 7T FT-ICR MS provided comparable performance in the deep profiling of the complex oil sample, with better signal intensities and reproducibilities for absorption-mode processing. The 15T FT-ICR MS gave more precise measurements with better estimates of the sample's elemental compositions. To the best of our knowledge, this is the first published study, which thoroughly compared the performance of 2ω detection on a low magnetic field instrument with that of a high magnetic field FT-ICR-MS.

20.
Bull Environ Contam Toxicol ; 85(6): 562-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21107524

RESUMO

To understand the nitrogen sources and fate in the surface water of Tianjin, the concentrations of nitrogen and δ¹5N-NO3⁻ were analyzed in different types of waters. Mostly, NO3⁻ was the dominant species of DIN (Dissolved Inorganic Nitrogen), although NH4+ was the main species in certain samples, such as sewage. The δ¹5N-NO3⁻ values ranged from -5.5 to +28.6‰. The water chemical and isotopic results suggested that domestic sewage and agricultural activities were the two main sources of nitrate in surface waters. In addition, the nitrogen isotopic compositions were significantly influenced by nitrification, ammonia volatilization and denitrification.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/química , Nitratos/análise , Isótopos de Nitrogênio/análise , Poluentes Químicos da Água/análise , China , Esgotos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA