Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(13): 5307-5314, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38504497

RESUMO

Gene doping involves the misuse of genetic materials to alter an athlete's performance, which is banned at all times in both human and equine sports. Quantitative polymerase chain reaction (qPCR) assays have been used to control the misuse of transgenes in equine sports. Our laboratory recently developed and implemented duplex as well as multiplex qPCR assays for transgenes detection. To further advance gene doping control, we have developed for the first time a sensitive and definitive PCR-liquid chromatography high-resolution tandem mass spectrometry (PCR-LC-HRMS/MS) method for transgene detection with an estimated limit of detection of below 100 copies/mL for the human erythropoietin (hEPO) transgene in equine plasma. The method involved magnetic-glass-particle-based extraction of DNA from equine plasma prior to PCR amplification with 2'-deoxyuridine 5'-triphosphate (dUTP) followed by treatments with uracil DNA glycosylase and hot piperidine for selective cleavage to give small oligonucleotide fragments. The resulting DNA fragments were then analyzed by LC-HRMS/MS. The applicability of this method has been demonstrated by the successful detection of hEPO transgene in a blood sample collected from a gelding (castrated male horse) that had been administered the transgene. This novel approach not only serves as a complementary method for transgene detection but also paves the way for developing a generic PCR-LC-HRMS/MS method for the detection of multiple transgenes.


Assuntos
Dopagem Esportivo , Eritropoetina , Cavalos , Animais , Humanos , Masculino , Espectrometria de Massas em Tandem/métodos , Dopagem Esportivo/prevenção & controle , Cromatografia Líquida/métodos , Eritropoetina/genética , Transgenes , DNA , Reação em Cadeia da Polimerase
2.
Drug Test Anal ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924320

RESUMO

Bisphosphonates and myo-inositol trispyrophosphate (ITPP) are two classes of difficult-to-detect polar drugs that are prohibited under the rules of racing. ITPP is a drug capable of increasing the amount of oxygen in hypoxic tissues, and studies have shown that administration of ITPP increases the maximal exercise capacity in mice. The properties of ITPP make it an ideal candidate as a doping agent to enhance performance in racehorses. In recent years, ITPP had indeed been detected in racehorses and confiscated items. As for bisphosphonates, it is especially critical to control their use as since February 2019, the International Agreement on Breeding, Racing and Wagering (IABRW) by the International Federation of Horseracing Authorities (IFHA) had identified specific conditions on which bisphosphonates should not be administered to a racehorse. A recent review of literature shows that there is yet a simultaneous screening method for detecting ITPP and bisphosphonates in equine samples. This paper describes an efficient ion chromatography high-resolution mass spectrometry (IC-HRMS) method for the simultaneous detection of ITPP and 10 bisphosphonates at sub-parts-per-billion (ppb) to low-ppb levels in equine plasma after solid-phase extraction (SPE) and its application to an administration study of clodronic acid in horses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA