Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 155(3): 594-605, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24243017

RESUMO

Nuclear export of unspliced and singly spliced viral mRNA is a critical step in the HIV life cycle. The structural basis by which the virus selects its own mRNA among more abundant host cellular RNAs for export has been a mystery for more than 25 years. Here, we describe an unusual topological structure that the virus uses to recognize its own mRNA. The viral Rev response element (RRE) adopts an "A"-like structure in which the two legs constitute two tracks of binding sites for the viral Rev protein and position the two primary known Rev-binding sites ~55 Å apart, matching the distance between the two RNA-binding motifs in the Rev dimer. Both the legs of the "A" and the separation between them are required for optimal RRE function. This structure accounts for the specificity of Rev for the RRE and thus the specific recognition of the viral RNA.


Assuntos
Transporte Ativo do Núcleo Celular , HIV-1/química , RNA Mensageiro/química , RNA Viral/química , Produtos do Gene rev do Vírus da Imunodeficiência Humana/química , Sequência de Bases , Sítios de Ligação , Núcleo Celular/metabolismo , Células HEK293 , HIV-1/genética , Humanos , Dados de Sequência Molecular , Poro Nuclear/metabolismo , Conformação de Ácido Nucleico , Dobramento de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo
2.
J Biol Chem ; 300(10): 107727, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39214302

RESUMO

Ubiquitin-specific proteases (USPs) are a family of multi-domain deubiquitinases (DUBs) with variable architectures, some containing regulatory auxiliary domains. Among the USP family, all occurrences of intramolecular regulation presently known are autoactivating. USP8 remains the sole exception as its putative WW-like domain, conserved only in vertebrate orthologs, is autoinhibitory. Here, we present a comprehensive structure-function analysis describing the autoinhibition of USP8 and provide evidence of the physical interaction between the WW-like and catalytic domains. The solution structure of full-length USP8 reveals an extended, monomeric conformation. Coupled with DUB assays, the WW-like domain is confirmed to be the minimal autoinhibitory unit. Strikingly, autoinhibition is only observed with the WW-like domain in cis and depends on the length of the linker tethering it to the catalytic domain. Modeling of the WW:CD complex structure and mutagenesis of interface residues suggests a novel binding site in the S1 pocket. To investigate the interplay between phosphorylation and USP8 autoinhibition, we identify AMP-activated protein kinase as a highly selective modifier of S718 in the 14-3-3 binding motif. We show that 14-3-3γ binding to phosphorylated USP8 potentiates autoinhibition in a WW-like domain-dependent manner by stabilizing an autoinhibited conformation. These findings provide mechanistic details on the autoregulation of USP8 and shed light on its evolutionary significance.

3.
Nucleic Acids Res ; 51(18): 9952-9960, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37534568

RESUMO

RNA conformational heterogeneity often hampers its high-resolution structure determination, especially for large and flexible RNAs devoid of stabilizing proteins or ligands. The adenosylcobalamin riboswitch exhibits heterogeneous conformations under 1 mM Mg2+ concentration and ligand binding reduces conformational flexibility. Among all conformers, we determined one apo (5.3 Å) and four holo cryo-electron microscopy structures (overall 3.0-3.5 Å, binding pocket 2.9-3.2 Å). The holo dimers exhibit global motions of helical twisting and bending around the dimer interface. A backbone comparison of the apo and holo states reveals a large structural difference in the P6 extension position. The central strand of the binding pocket, junction 6/3, changes from an 'S'- to a 'U'-shaped conformation to accommodate ligand. Furthermore, the binding pocket can partially form under 1 mM Mg2+ and fully form under 10 mM Mg2+ within the bound-like structure in the absence of ligand. Our results not only demonstrate the stabilizing ligand-induced conformational changes in and around the binding pocket but may also provide further insight into the role of the P6 extension in ligand binding and selectivity.

4.
Infection ; 52(3): 1063-1072, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38265608

RESUMO

BACKGROUND AND PURPOSE: The need for dose adjustment of caspofungin in patients with hepatic impairment is controversial, especially for those with Child-Pugh B or C cirrhosis. The purpose of this study was to investigate the safety and efficacy of standard-dose caspofungin administration in Child-Pugh B and C cirrhotic patients in a real-world clinical setting. PATIENTS AND METHODS: The electronic medical records of 258 cirrhotic patients, including 67 Child-Pugh B patients and 191 Child-Pugh C patients, who were treated with standard-dose of caspofungin at the Second Affiliated Hospital of Chongqing Medical University, China, from March 2018 to June 2023 were reviewed retrospectively. The white blood cells (WBC), hepatic, renal and coagulation function results before administration and post administration on days 7, 14 and 21 were collected, and the efficacy was assessed in all patients at the end of caspofungin therapy. RESULTS: Favorable responses were achieved in 137 (53.1%) patients while 34 (13.2%) patients died. We observed that some patients experienced an increase of prothrombin time (PT) or international normalized ratio (INR), or a decrease of WBC, but no exacerbation of hepatic or renal dysfunction were identified and no patient required dose interruption or adjustment because of an adverse drug reaction during treatment with caspofungin. CONCLUSIONS: Standard-dose of caspofungin can be safely and effectively used in patients with Child-Pugh B or C cirrhosis, and we appealed to re-assess the most suitable dosing regimen in this population to avoid a potential subtherapeutic exposure.


Assuntos
Antifúngicos , Caspofungina , Cirrose Hepática , Humanos , Caspofungina/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/complicações , Estudos Retrospectivos , Idoso , Antifúngicos/uso terapêutico , Antifúngicos/efeitos adversos , Antifúngicos/administração & dosagem , Resultado do Tratamento , Adulto , China
5.
Nucleic Acids Res ; 50(4): 2287-2301, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35137150

RESUMO

Subdomain 5BSL3.2 of hepatitis C virus RNA lies at the core of a network of distal RNA-RNA contacts that connect the 5' and 3' regions of the viral genome and regulate the translation and replication stages of the viral cycle. Using small-angle X-ray scattering and NMR spectroscopy experiments, we have determined at low resolution the structural models of this subdomain and its distal complex with domain 3'X, located at the 3'-terminus of the viral RNA chain. 5BSL3.2 adopts a characteristic 'L' shape in solution, whereas the 5BSL3.2-3'X distal complex forms a highly unusual 'Y'-shaped kissing junction that blocks the dimer linkage sequence of domain 3'X and promotes translation. The structure of this complex may impede an effective association of the viral polymerase with 5BSL3.2 and 3'X to start negative-strand RNA synthesis, contributing to explain the likely mechanism used by these sequences to regulate viral replication and translation. In addition, sequence and shape features of 5BSL3.2 are present in functional RNA motifs of flaviviruses, suggesting conserved regulatory processes within the Flaviviridae family.


Assuntos
Flaviviridae , Hepacivirus , Regiões 3' não Traduzidas , Genoma Viral , Hepacivirus/genética , Modelos Estruturais , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , Replicação Viral/genética
6.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 293-296, 2024 Apr.
Artigo em Zh | MEDLINE | ID: mdl-38686728

RESUMO

Hereditary protein C deficiency is a chromosomal genetic disease caused by mutations in the protein C gene,which can lead to venous thrombosis and is mostly related to mutations in exons 4-9 and intron 8.Fatal pulmonary embolism caused by mutations in the protein C gene is rare,and the treatment faces great challenges.This article reports a case of fatal pulmonary embolism caused by a frameshift mutation in exon 8 of the protein C gene and summarizes the treatment experience of combining extracorporeal membrane oxygenation (for respiratory and circulatory support) with interventional thrombectomy,providing a basis for the diagnosis and treatment of this disease.


Assuntos
Oxigenação por Membrana Extracorpórea , Deficiência de Proteína C , Embolia Pulmonar , Trombectomia , Humanos , Masculino , Oxigenação por Membrana Extracorpórea/métodos , Mutação da Fase de Leitura , Deficiência de Proteína C/complicações , Embolia Pulmonar/terapia , Embolia Pulmonar/etiologia , Trombectomia/métodos , Pessoa de Meia-Idade
7.
Nucleic Acids Res ; 49(10): 5967-5984, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34023896

RESUMO

Quorum sensing gene expression in vibrios is regulated by the LuxR/HapR family of transcriptional factors, which includes Vibrio vulnificus SmcR. The consensus binding site of Vibrio LuxR/HapR/SmcR proteins is palindromic but highly degenerate with sequence variations at each promoter. To examine the mechanism by which SmcR recognizes diverse DNA sites, we generated SmcR separation-of-function mutants that either repress or activate transcription but not both. SmcR N55I is restricted in recognition of single base-pair variations in DNA binding site sequences and thus is defective at transcription activation but retains interaction with RNA polymerase (RNAP) alpha. SmcR S76A, L139R and N142D substitutions disrupt the interaction with RNAP alpha but retain functional DNA binding activity. X-ray crystallography and small angle X-ray scattering data show that the SmcR DNA binding domain exists in two conformations (wide and narrow), and the protein complex forms a mixture of dimers and tetramers in solution. The three RNAP interaction-deficient variants also have two DNA binding domain conformations, whereas SmcR N55I exhibits only the wide conformation. These data support a model in which two mechanisms drive SmcR transcriptional activation: interaction with RNAP and a multi-conformational DNA binding domain that permits recognition of variable DNA sites.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/química , Transativadores/química , Transativadores/genética , Fatores de Transcrição/química , Vibrio vulnificus/química , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Dimerização , Expressão Gênica , Regulação Bacteriana da Expressão Gênica/genética , Modelos Moleculares , Mutação , Regiões Promotoras Genéticas , Conformação Proteica , Percepção de Quorum/genética , Proteínas Recombinantes , Proteínas Repressoras/química , Proteínas Repressoras/genética , Espalhamento a Baixo Ângulo , Fatores de Transcrição/genética , Vibrio vulnificus/genética
8.
J Org Chem ; 87(22): 15187-15196, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36317743

RESUMO

A method for the synthesis of 2-(1H-imidazol-1-yl)-4H-chromen-4-one derivatives (IMCMs) from 3-cyanochromones and α-isocyanoacetates via a one-pot cascade reaction involving a 1,2-addition, Michael reaction, ring-closing, tautomerization, ring-opening, and [3 + 2] cyclization was enabled by refluxing a mixture of the starting materials in THF in the presence of Ag2CO3 as a catalyst. The cascade reaction resulted in the formation of five bonds and the cleavage of two bonds, including a triple bond, in one pot. This protocol enabled not only the synthesis of functionalized imidazoles (i.e., IMCMs) but also the synthesis of functionally useful enamine building blocks. This strategy is suitable for combinatorial and parallel syntheses of IMCMs.

9.
Mediators Inflamm ; 2022: 6394199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769207

RESUMO

The liver is vulnerable to sepsis, and sepsis-induced liver injury is closely associated with poor survival of sepsis patients. Studies have found that the overproduction of reactive oxygen species (ROS) is the major cause of oxidative stress, which is the main pathogenic factor for the progression of septic liver injury. The mitochondria are a major source of ROS. Mito-TEMPO is a mitochondria-specific superoxide scavenger. The aim of this study was to investigate the effect of Mito-TEMPO on lipopolysaccharide- (LPS-) induced sepsis mice. We found that Mito-TEMPO pretreatment inhibited inflammation, attenuated LPS-induced liver injury, and enhanced the antioxidative capability in septic mice, as evidenced by the decreased MDA content and the increased SOD activity. In addition, Mito-TEMPO restored mitochondrial size and improved mitochondrial function. Finally, we found that the levels of pyroptosis-related proteins in the liver of LPS-treated mice were lower after pretreatment with Mito-TEMPO. The mechanisms could be related to Mito-TEMPO enhanced antioxidative capability and improved mitochondrial function, which reflects the ability to neutralize ROS.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Sepse , Animais , Antioxidantes/metabolismo , Óxidos N-Cíclicos , Lipopolissacarídeos/farmacologia , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sepse/metabolismo
10.
J Struct Biol ; 213(1): 107703, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33571639

RESUMO

Effective gene regulation by the tetrahydrofolate riboswitch depends not only on ligand affinity but also on the kinetics of ligand association, which involves two cooperative binding sites. We have determined a 1.9-Å resolution crystal structure of the ligand-free THF riboswitch aptamer. The pseudoknot binding site 'unwinds' in the absence of ligand, whereby the adjacent helical domains (P1, P2, and P3) become disjointed, resulting in rotation and misalignment of the gene-regulatory P1 helix with respect to P3. In contrast, the second binding site at the three-way junction, which is the first to fold, is structurally conserved between apo and holo forms. This suggests a kinetic role for this site, in which binding of the first ligand molecule to the stably folded three-way junction promotes formation of the regulatory pseudoknot site and subsequent binding of the second molecule. As such, these findings provide a molecular basis for both conformational switching and kinetic control.


Assuntos
Riboswitch/genética , Tetra-Hidrofolatos/genética , Aptâmeros de Nucleotídeos/genética , Sítios de Ligação/genética , Cristalografia por Raios X/métodos , Cinética , Ligantes , Conformação de Ácido Nucleico , Termodinâmica
11.
Nature ; 522(7556): 368-72, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25938715

RESUMO

Knowledge of the structure and dynamics of RNA molecules is critical to understanding their many biological functions. Furthermore, synthetic RNAs have applications as therapeutics and molecular sensors. Both research and technological applications of RNA would be dramatically enhanced by methods that enable incorporation of modified or labelled nucleotides into specifically designated positions or regions of RNA. However, the synthesis of tens of milligrams of such RNAs using existing methods has been impossible. Here we develop a hybrid solid-liquid phase transcription method and automated robotic platform for the synthesis of RNAs with position-selective labelling. We demonstrate its use by successfully preparing various isotope- or fluorescently labelled versions of the 71-nucleotide aptamer domain of an adenine riboswitch for nuclear magnetic resonance spectroscopy or single-molecule Förster resonance energy transfer, respectively. Those RNAs include molecules that were selectively isotope-labelled in specific loops, linkers, a helix, several discrete positions, or a single internal position, as well as RNA molecules that were fluorescently labelled in and near kissing loops. These selectively labelled RNAs have the same fold as those transcribed using conventional methods, but they greatly simplify the interpretation of NMR spectra. The single-position isotope- and fluorescently labelled RNA samples reveal multiple conformational states of the adenine riboswitch. Lastly, we describe a robotic platform and the operation that automates this technology. Our selective labelling method may be useful for studying RNA structure and dynamics and for making RNA sensors for a variety of applications including cell-biological studies, substance detection, and disease diagnostics.


Assuntos
Fluorescência , Marcação por Isótopo/métodos , RNA/química , RNA/síntese química , Adenina/análise , Adenina/química , Adenina/metabolismo , Aptâmeros de Nucleotídeos/análise , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Automação/métodos , Sequência de Bases , Técnicas Biossensoriais , DNA/genética , DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA/análise , RNA/genética , Riboswitch/genética , Robótica , Moldes Genéticos , Transcrição Gênica
12.
Angew Chem Int Ed Engl ; 60(4): 1839-1844, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33058450

RESUMO

The first electrochemical hydrolysis of hydrosilanes to silanols under mild and neutral reaction conditions is reported. The practical protocol employs commercially available and cheap NHPI as a hydrogen-atom transfer (HAT) mediator and operates at room temperature with high selectivity, leading to various valuable silanols in moderate to good yields. Notably, this electrochemical method exhibits a broad substrate scope and high functional-group compatibility, and it is applicable to late-stage functionalization of complex molecules. Preliminary mechanistic studies suggest that the reaction appears to proceed through a nucleophilic substitution reaction of an electrogenerated silyl cation with H2 O.

13.
Small ; 16(38): e2002791, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32812339

RESUMO

Combination therapies that target multiple pathways involved in immune rejection of transplants hold promise for patients in need of restorative surgery. Herein, a noninteracting multiphase molecular assembly approach is developed to crystallize tofacitinib, a potent JAK1/3 inhibitor, within a shear-thinning self-assembled fibrillar peptide hydrogel network. The resulting microcrystalline tofacitinib hydrogel (MTH) can be syringe-injected directly to the grafting site during surgery to locally deliver the small molecule. The rate of drug delivered from MTH is largely controlled by the dissolution of the encapsulated microcrystals. A single application of MTH, in combination with systemically delivered CTLA4-Ig, a co-stimulation inhibitor, affords significant graft survival in mice receiving heterotopic heart transplants. Locoregional studies indicate that the local delivery of tofacitinib at the graft site enabled by MTH is required for the observed enhanced graft survival.


Assuntos
Transplante de Coração , Hidrogéis , Animais , Humanos , Imunomodulação , Camundongos , Peptídeos
14.
Bioorg Med Chem Lett ; 30(20): 127419, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32768648

RESUMO

Discovery of novel classes of Gram-negative antibiotics with activity against multi-drug resistant infections is a critical unmet need. As an essential member of the lipoprotein biosynthetic pathway, lipoprotein signal peptidase II (LspA) is an attractive target for antibacterial drug discovery, with the natural product inhibitor globomycin offering a modestly-active starting point. Informed by structure-based design, the globomycin depsipeptide was optimized to improve activity against E. coli. Backbone modifications, together with adjustment of physicochemical properties, afforded potent compounds with good in vivo pharmacokinetic profiles. Optimized compounds such as 51 (E. coli MIC 3.1 µM) and 61 (E. coli MIC 0.78 µM) demonstrate broad spectrum activity against gram-negative pathogens and may provide opportunities for future antibiotic discovery.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Peptídeos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Relação Estrutura-Atividade
15.
Bioorg Med Chem Lett ; 30(4): 126907, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31902710

RESUMO

Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates.


Assuntos
Anticorpos Monoclonais/imunologia , Portadores de Fármacos/química , Receptor alfa de Estrogênio/imunologia , Anticorpos Monoclonais/química , Antineoplásicos/química , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Receptor alfa de Estrogênio/metabolismo , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/farmacologia , Células MCF-7 , Proteólise/efeitos dos fármacos , Receptor ErbB-2/metabolismo
16.
J Biomol NMR ; 73(8-9): 509-518, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31606878

RESUMO

Riboswitches are structured cis-regulators mainly found in the untranslated regions of messenger RNA. The aptamer domain of a riboswitch serves as a sensor for its ligand, the binding of which triggers conformational changes that regulate the behavior of its expression platform. As a model system for understanding riboswitch structures and functions, the add adenine riboswitch has been studied extensively. However, there is a need for further investigation of the conformational dynamics of the aptamer in light of the recent real-time crystallographic study at room temperature (RT) using an X-ray free electron laser (XFEL) and femtosecond X-ray crystallography (SFX). Herein, we investigate the conformational motions of the add adenine riboswitch aptamer domain, in the presence or absence of adenine, using nuclear magnetic resonance relaxation measurements and analysis of RT atomic displacement factors (B-factors). In the absence of ligand, the P1 duplex undergoes a fast exchange where the overall molecule exhibits a motion at kex ~ 319 s-1, based on imino signals. In the presence of ligand, the P1 duplex adopts a highly ordered conformation, with kex~ 83 s-1, similar to the global motion of the molecule, excluding the loops and binding pocket, at 84 s-1. The µs-ms motions in both the apo and bound states are consistent with RT B-factors. Reduced spatial atomic fluctuation, ~ 50%, in P1 upon ligand binding coincides with significantly attenuated temporal dynamic exchanges. The binding pocket is structured in the absence or presence of ligand, as evidenced by relatively low and similar RT B-factors. Therefore, despite the dramatic rearrangement of the binding pocket, those residues exhibit similar spatial thermal fluctuation before and after binding.


Assuntos
Adenina/química , Aptâmeros de Nucleotídeos/química , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Riboswitch , Cristalografia por Raios X , Modelos Moleculares
17.
RNA ; 23(9): 1465-1476, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28630140

RESUMO

The 3'X domain is a 98-nt region located at the 3' end of hepatitis C virus genomic RNA that plays essential functions in the viral life cycle. It contains an absolutely conserved, 16-base palindromic sequence that promotes viral RNA dimerization, overlapped with a 7-nt tract implicated in a distal contact with a nearby functional sequence. Using small angle X-ray scattering measurements combined with model building guided by NMR spectroscopy, we have studied the stoichiometry, structure, and flexibility of domain 3'X and two smaller subdomain sequences as a function of ionic strength, and obtained a three-dimensional view of the full-length domain in its monomeric and dimeric states. In the monomeric form, the 3'X domain adopted an elongated conformation containing two SL1' and SL2' double-helical stems stabilized by coaxial stacking. This structure was significantly less flexible than that of isolated subdomain SL2' monomers. At higher ionic strength, the 3'X scattering envelope nearly doubled its size, reflecting the formation of extended homodimers containing an antiparallel SL2' duplex flanked by coaxially stacked SL1' helices. Formation of these dimers could initialize and/or regulate the packaging of viral RNA genomes into virions.


Assuntos
Regiões 3' não Traduzidas , Hepacivirus/genética , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , Dimerização , Sequências Repetidas Invertidas , Espectroscopia de Ressonância Magnética , Concentração Osmolar , Soluções
20.
Bioorg Med Chem Lett ; 29(12): 1522-1531, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30981576

RESUMO

Disruption of interleukin-13 (IL-13) signaling with large molecule antibody therapies has shown promise in diseases of allergic inflammation. Given that IL-13 recruits several members of the Janus Kinase family (JAK1, JAK2, and TYK2) to its receptor complex, JAK inhibition may offer an alternate small molecule approach to disrupting IL-13 signaling. Herein we demonstrate that JAK1 is likely the isoform most important to IL-13 signaling. Structure-based design was then used to improve the JAK1 potency of a series of previously reported JAK2 inhibitors. The ability to impede IL-13 signaling was thereby significantly improved, with the best compounds exhibiting single digit nM IC50's in cell-based assays dependent upon IL-13 signaling. Appropriate substitution was further found to influence inhibition of a key off-target, LRRK2. Finally, the most potent compounds were found to be metabolically labile, which makes them ideal scaffolds for further development as topical agents for IL-13 mediated diseases of the lungs and skin (for example asthma and atopic dermatitis, respectively).


Assuntos
Dermatite Atópica/genética , Interleucina-13/metabolismo , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA