Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 184(10): 2525-2531, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33989545

RESUMO

Human cell lines (CLs) are key assets for biomedicine but lack ancestral diversity. Here, we explore why genetic diversity among cell-based models is essential for making preclinical research more equitable and widely translatable. We lay out practical actions that can be taken to improve inclusivity in study design.


Assuntos
Pesquisa Biomédica/ética , Negro ou Afro-Americano/genética , Linhagem Celular , Medicina de Precisão/ética , População Branca/genética , Variação Genética , Humanos , Testes Farmacogenômicos
2.
Mol Ecol ; 33(9): e17358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38625740

RESUMO

How do chemically defended animals resist their own toxins? This intriguing question on the concept of autotoxicity is at the heart of how species interactions evolve. In this issue of Molecular Ecology (Molecular Ecology, 2024, 33), Bodawatta and colleagues report on how Papua New Guinean birds coopted deadly neurotoxins to create lethal mantles that protect against predators and parasites. Combining chemical screening of the plumage of a diverse collection of passerine birds with genome sequencing, the researchers unlocked a deeper understanding of how some birds sequester deadly batrachotoxin (BTX) from their food without poisoning themselves. They identified that birds impervious to BTX bear amino acid substitutions in the toxin-binding site of the voltage-gated sodium channel Nav1.4, whose function is essential for proper contraction and relaxation of vertebrate muscles. Comparative genetic and molecular docking analyses show that several of the substitutions associated with insensitivity to BTX may have become prevalent among toxic birds through positive selection. Intriguingly, poison dart frogs that also co-opted BTX in their lethal mantles were found to harbour similar toxin insensitivity substitutions in their Nav1.4 channels. Taken together, this sets up a powerful model system for studying the mechanisms behind convergent molecular evolution and how it may drive biological diversity.


Assuntos
Animais Peçonhentos , Batraquiotoxinas , Aves Canoras , Animais , Batraquiotoxinas/genética , Neurotoxinas/toxicidade , Neurotoxinas/genética , Passeriformes/genética , Anuros/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Substituição de Aminoácidos , Rãs Venenosas
3.
G3 (Bethesda) ; 13(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37317982

RESUMO

Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genomic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families-genes directly mediating interactions with plant chemical defenses-underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many insect lineages are ancient (>150 million years ago (mya)), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several nonherbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza has among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant-binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on living plants (bitter or electrophilic phytotoxins) or their ancestral diet (fermenting plant volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight gene candidates that have also been linked to other dietary transitions in Drosophila.


Assuntos
Proteínas de Drosophila , Herbivoria , Animais , Herbivoria/genética , Drosophila/genética , Drosophila/metabolismo , Insetos , Proteínas de Drosophila/genética , Genômica/métodos , Filogenia , Evolução Molecular
4.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993186

RESUMO

Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genetic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families - genes directly mediating interactions with plant chemical defenses - underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many lineages are ancient (>150 million years ago [mya]), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several non-herbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza have among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on plants (bitter or electrophilic phytotoxins) or their ancestral diet (yeast and fruit volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight strong gene candidates that have also been linked to other dietary transitions in Drosophila .

5.
Genome Biol ; 21(1): 21, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32019604

RESUMO

BACKGROUND: The circum-basmati group of cultivated Asian rice (Oryza sativa) contains many iconic varieties and is widespread in the Indian subcontinent. Despite its economic and cultural importance, a high-quality reference genome is currently lacking, and the group's evolutionary history is not fully resolved. To address these gaps, we use long-read nanopore sequencing and assemble the genomes of two circum-basmati rice varieties. RESULTS: We generate two high-quality, chromosome-level reference genomes that represent the 12 chromosomes of Oryza. The assemblies show a contig N50 of 6.32 Mb and 10.53 Mb for Basmati 334 and Dom Sufid, respectively. Using our highly contiguous assemblies, we characterize structural variations segregating across circum-basmati genomes. We discover repeat expansions not observed in japonica-the rice group most closely related to circum-basmati-as well as the presence and absence variants of over 20 Mb, one of which is a circum-basmati-specific deletion of a gene regulating awn length. We further detect strong evidence of admixture between the circum-basmati and circum-aus groups. This gene flow has its greatest effect on chromosome 10, causing both structural variation and single-nucleotide polymorphism to deviate from genome-wide history. Lastly, population genomic analysis of 78 circum-basmati varieties shows three major geographically structured genetic groups: Bhutan/Nepal, India/Bangladesh/Myanmar, and Iran/Pakistan. CONCLUSION: The availability of high-quality reference genomes allows functional and evolutionary genomic analyses providing genome-wide evidence for gene flow between circum-aus and circum-basmati, describes the nature of circum-basmati structural variation, and reveals the presence/absence variation in this important and iconic rice variety group.


Assuntos
Sequenciamento por Nanoporos/métodos , Oryza/genética , Sequenciamento Completo do Genoma/métodos , Cromossomos de Plantas/genética , Mapeamento de Sequências Contíguas/métodos , Evolução Molecular , Genoma de Planta , Oryza/classificação , Filogenia
6.
Elife ; 62017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182147

RESUMO

DNA re-identification is used for a broad suite of applications, ranging from cell line authentication to forensics. However, current re-identification schemes suffer from high latency and limited access. Here, we describe a rapid, inexpensive, and portable strategy to robustly re-identify human DNA called 'MinION sketching'. MinION sketching requires as few as 3 min of sequencing and 60-300 random SNPs to re-identify a sample enabling near real-time applications of DNA re-identification. Our method capitalizes on the rapidly growing availability of genomic reference data for cell lines, tissues in biobanks, and individuals. This empowers the application of MinION sketching in research and clinical settings for periodic cell line and tissue authentication. Importantly, our method enables considerably faster and more robust cell line authentication relative to current practices and could help to minimize the amount of irreproducible research caused by mix-ups and contamination in human cell and tissue cultures.


Assuntos
DNA/genética , Técnicas de Genotipagem/métodos , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos , DNA/química , Humanos , Polimorfismo de Nucleotídeo Único , Fatores de Tempo
7.
Elife ; 52016 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-27054412

RESUMO

The advent of mobile DNA sequencers has made it possible to generate DNA sequencing data outside of laboratories and genome centers. Here, we report our experience of using the MinION, a mobile sequencer, in a 13-week academic course for undergraduate and graduate students. The course consisted of theoretical sessions that presented fundamental topics in genomics and several applied hackathon sessions. In these hackathons, the students used MinION sequencers to generate and analyze their own data and gain hands-on experience in the topics discussed in the theoretical classes. The manuscript describes the structure of our class, the educational material, and the lessons we learned in the process. We hope that the knowledge and material presented here will provide the community with useful tools to help educate future generations of genome scientists.


Assuntos
Biologia Molecular/educação , Biologia Molecular/métodos , Análise de Sequência de DNA/instrumentação , Humanos
9.
Cell Rep ; 16(1): 148-160, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27320927

RESUMO

Clearance of entangled DNA from the anaphase mid-region must accurately proceed in order for chromosomes to segregate with high fidelity. Loss of Taz1 (fission yeast ortholog of human TRF1/TRF2) leads to stalled telomeric replication forks that trigger telomeric entanglements; the resolution of these entanglements fails at ≤20°C. Here, we investigate these entanglements and their promotion by the conserved replication/repair protein Rif1. Rif1 plays no role in taz1Δ fork stalling. Rather, Rif1 localizes to the anaphase mid-region and regulates the resolution of persisting DNA structures. This anaphase role for Rif1 is genetically separate from the role of Rif1 in S/G2, though both roles require binding to PP1 phosphatase, implying spatially and temporally distinct Rif1-regulated phosphatase substrates. Rif1 thus acts as a double-edged sword. Although it inhibits the resolution of taz1Δ telomere entanglements, it promotes the resolution of non-telomeric ultrafine anaphase bridges at ≤20°C. We suggest a unifying model for Rif1's seemingly diverse roles in chromosome segregation in eukaryotes.


Assuntos
DNA Fúngico/química , DNA Fúngico/metabolismo , Mitose , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Anáfase , Pontos de Checagem do Ciclo Celular , Centrômero/metabolismo , Cromátides/metabolismo , Replicação do DNA , DNA Ribossômico/metabolismo , Proteína de Replicação A/metabolismo , Telômero/metabolismo
10.
Genes Dev ; 22(20): 2869-85, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18923084

RESUMO

The Shugoshin/Aurora circuitry that controls the timely release of cohesins from sister chromatids in meiosis and mitosis is widely conserved among eukaryotes, although little is known about its function in organisms whose chromosomes lack a localized centromere. Here we show that Caenorhabditis elegans chromosomes rely on an alternative mechanism to protect meiotic cohesin that is shugoshin-independent and instead involves the activity of a new chromosome-associated protein named LAB-1 (Long Arm of the Bivalent). LAB-1 preserves meiotic sister chromatid cohesion by restricting the localization of the C. elegans Aurora B kinase, AIR-2, to the interface between homologs via the activity of the PP1/Glc7 phosphatase GSP-2. The localization of LAB-1 to chromosomes of dividing embryos and the suppression of mitotic-specific defects in air-2 mutant embryos with reduced LAB-1 activity support a global role of LAB-1 in antagonizing AIR-2 in both meiosis and mitosis. Although the localization of a GFP fusion and the analysis of mutants and RNAi-mediated knockdowns downplay a role for the C. elegans shugoshin protein in cohesin protection, shugoshin nevertheless helps to ensure the high fidelity of chromosome segregation at metaphase I. We propose that, in C. elegans, a LAB-1-mediated mechanism evolved to offset the challenges of providing protection against separase activity throughout a larger chromosome area.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Aurora Quinase B , Aurora Quinases , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Proteínas de Ligação a DNA/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Imunofluorescência , Imunoglobulina G/imunologia , Meiose/fisiologia , Prófase Meiótica I/fisiologia , Mitose/fisiologia , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Troca de Cromátide Irmã , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA