Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biomed Pharmacother ; 146: 112531, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34906771

RESUMO

Despite the promising medicinal properties, berberine (BBR), due to its relatively poor solubility in plasma, low bio-stability and limited bioavailability is not used broadly in clinical stages. Due to these drawbacks, drug delivery systems (DDSs) based on nanoscale natural polysaccharides, are applied to address these concerns. Natural polymers are biodegradable, non-immunogenic, biocompatible, and non-toxic agents that are capable of trapping large amounts of hydrophobic compounds in relatively small volumes. The use of nanoscale natural polysaccharide improves the stability and pharmacokinetics of the small molecules and, consequently, increases the therapeutic effects and reduces the side effects of the small molecules. Therefore, this paper presents an overview of the different methods used for increasing the BBR solubility and bioavailability. Afterwards, the pharmacodynamic and pharmacokinetic of BBR nanostructures were discussed followed by the introduction of natural polysaccharides of plant (cyclodextrines, glucomannan), the shells of crustaceans (chitosan), and the cell wall of brown marine algae (alginate)-based origins used to improve the dissolution rate of poorly soluble BBR and their anticancer and antibacterial properties. Finally, the anticancer and antibacterial mechanisms of free BBR and BBR nanostructures were surveyed. In conclusion, this review may pave the way for providing some useful data in the development of BBR-based platforms for clinical applications.


Assuntos
Berberina , Quitosana , Nanoestruturas , Antibacterianos/farmacologia , Berberina/química , Disponibilidade Biológica , Quitosana/química
2.
Blood Rev ; 50: 100850, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34049731

RESUMO

Hematopoietic stem cells (HSC) are responsible for the production of mature blood cells. To ensure that the HSC pool does not get exhausted over the lifetime of an individual, most HSCs are in a state of quiescence with only a small proportion of HSCs dividing at any one time. HSC quiescence is carefully controlled by both intrinsic and extrinsic, niche-driven mechanisms. In acute myeloid leukemia (AML), the leukemic cells overtake the hematopoietic bone marrow niche where they acquire a quiescent state. These dormant AML cells are resistant to chemotherapeutics. Because they can re-establish the disease after therapy, they are often termed as quiescent leukemic stem cells (LSC) or leukemia-initiating cells. While advancements are being made to target particular driver mutations in AML, there is less focus on how to tackle the drug resistance of quiescent LSCs. This review summarises the current knowledge on the biochemical characteristics of quiescent HSCs and LSCs, the intracellular signaling pathways and the niche-driven mechanisms that control quiescence and the key differences between HSC- and LSC-quiescence that may be exploited for therapy.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Medula Óssea/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
3.
Front Cell Dev Biol ; 9: 662868, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589478

RESUMO

The main challenge in the treatment of acute myeloid leukemia (AML) is relapse, as it has no good treatment options and 90% of relapsed patients die as a result. It is now well accepted that relapse is due to a persisting subset of AML cells known as leukemia-initiating cells or leukemic stem cells (LSCs). Hematopoietic stem cells (HSCs) reside in the bone marrow microenvironment (BMM), a specialized niche that coordinates HSC self-renewal, proliferation, and differentiation. HSCs are divided into two types: long-term HSCs (LT-HSCs) and short-term HSCs, where LT-HSCs are typically quiescent and act as a reserve of HSCs. Like LT-HSCs, a quiescent population of LSCs also exist. Like LT-HSCs, quiescent LSCs have low metabolic activity and receive pro-survival signals from the BMM, making them resistant to drugs, and upon discontinuation of therapy, they can become activated and re-establish the disease. Several studies have shown that the activation of quiescent LSCs may sensitize them to cytotoxic drugs. However, it is very difficult to experimentally model the quiescence-inducing BMM. Here we report that culturing AML cells with bone marrow stromal cells, transforming growth factor beta-1 and hypoxia in a three-dimensional system can replicate the quiescence-driving BMM. A quiescent-like state of the AML cells was confirmed by reduced cell proliferation, increased percentage of cells in the G0 cell cycle phase and a decrease in absolute cell numbers, expression of markers of quiescence, and reduced metabolic activity. Furthermore, the culture could be established as co-axial microbeads, enabling high-throughput screening, which has been used to identify combination drug treatments that could break BMM-mediated LSC quiescence, enabling the eradication of quiescent LSCs.

4.
J Control Release ; 338: 341-357, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34428480

RESUMO

Microneedle arrays have recently received much attention as cancer detection and treatment platforms, because invasive injections and detection of the biopsy are not needed, and drug metabolism by the liver, as well as adverse effects of systemic drug administration, are diminished. Microneedles have been used for diagnosis, vaccination, and in targeted drug delivery of breast cancer. In this review, we summarize the recent progress in diagnosis and targeted drug delivery for breast cancer treatment, using microneedle arrays to deliver active molecules through the skin. The results not only suggest that health and well-being of patients are improved, but also that microneedle arrays can deliver anticancer compounds in a relatively noninvasive manner, based on body weight, breast tumor size, and circulation time of the drug. Moreover, microneedles could allow simultaneous loading of multiple drugs and enable controlled release, thus effectively optimizing or preventing drug-drug interactions. This review is designed to encourage the use of microneedles for diagnosis and treatment of breast cancer, by describing general properties of microneedles, materials used for construction, mechanism of action, and principal benefits. Ongoing challenges and future perspectives for the application of microneedle array systems in breast cancer detection and treatment are highlighted.


Assuntos
Neoplasias da Mama , Administração Cutânea , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Humanos , Microinjeções , Agulhas , Pele/metabolismo
5.
Heliyon ; 10(1): e22095, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38249111
6.
Sci Rep ; 6: 26508, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27216374

RESUMO

Subtle changes in the structure of nanoparticles influence their surface tension and corresponding interaction with cells and proteins. Here, the interaction of the single wall carbon nanotube (SWCNT) and multiwall carbon nanotube (MWCNT) with different surface tension with tau protein was evaluated using a variety of techniques including far and near circular dichroism, fluorescence spectroscopy, dynamic light scattering, Zeta potential, and TEM evaluation. Also the cytotoxicity of SWCNT and MWCNT on the PC12 cell line as a model of nervous system cell line was investigated by the MTT, LDH, acridine orange/ethidium bromide staining, flow cytometry, caspase 3 activity, cell and membrane potential assays. It was observed that SWCNT induced more structural changes of tau protein relative to MWCNT/tau protein interaction. It was also revealed that SWCNT and MWCNT impaired the viability and complexity of PC12 cells in different modes of cytotoxicity. Analysis of cellular outcomes indicated that MWCNT in comparison with SWCNT resulted in induction of necrotic modes of cell death, whereas apoptotic modes of cell death were activated in SWCNT-incubated cells. Together these findings suggest that surface tension may be used to determine how nanoparticle structure affects neurotoxicity and protein conformational changes.


Assuntos
Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Sistema Nervoso/efeitos dos fármacos , Proteínas tau/química , Animais , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Difusão Dinâmica da Luz , Potenciais da Membrana/efeitos dos fármacos , Modelos Biológicos , Estrutura Molecular , Sistema Nervoso/metabolismo , Células PC12 , Conformação Proteica/efeitos dos fármacos , Ratos , Espectrometria de Fluorescência , Tensão Superficial
7.
PLoS One ; 11(10): e0164878, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27776180

RESUMO

Herein, the interaction of hen egg white lysozyme (HEWL) with iron nanoparticle (Fe NP) was investigated by spectroscopic and docking studies. The zeta potential analysis revealed that addition of Fe NP (6.45±1.03 mV) to HEWL (8.57±0.54 mV) can cause to greater charge distribution of nanoparticle-protein system (17.33±1.84 mV). In addition, dynamic light scattering (DLS) study revealed that addition of Fe NP (92.95±6.11 nm) to HEWL (2.68±0.37 nm) increases suspension potential of protein/nanoparticle system (51.17±3.19 nm). Fluorescence quenching studies reveled that both static and dynamic quenching mechanism occur and hydrogen bond and van der Waals interaction give rise to protein-NP system. Synchronous fluorescence spectroscopy of HEWL in the presence of Fe NP showed that the emission maximum wavelength of tryptophan (Trp) residues undergoes a red-shift. ANS fluorescence data indicated a dramatic exposure of hydrophobic residues to the solvent. The considerable reduction in melting temperature (T(m)) of HEWL after addition of Fe NP determines an unfavorable interaction system. Furthermore circular dichoroism (CD) experiments demonstrated that, the secondary structure of HEWL has not changed with increasing Fe NP concentrations; however, some conformational changes occur in tertiary structure of HEWL. Moreover, protein-ligand docking study confirmed that the Fe NP forms hydrogen bond contacts with HEWL.


Assuntos
Ferro/química , Muramidase/química , Muramidase/metabolismo , Nanopartículas/química , Animais , Dicroísmo Circular , Difusão Dinâmica da Luz , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA