Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 13(1): 2343912, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38629574

RESUMO

Human infections with the H7N9 influenza virus have been eliminated in China through vaccination of poultry; however, the H7N9 virus has not yet been eradicated from poultry. Carefully analysis of H7N9 viruses in poultry that have sub-optimal immunity may provide a unique opportunity to witness the evolution of highly pathogenic avian influenza virus in the context of vaccination. Between January 2020 and June 2023, we isolated 16 H7N9 viruses from samples we collected during surveillance and samples that were sent to us for disease diagnosis. Genetic analysis indicated that these viruses belonged to a single genotype previously detected in poultry. Antigenic analysis indicated that 12 of the 16 viruses were antigenically close to the H7-Re4 vaccine virus that has been used since January 2022, and the other four viruses showed reduced reactivity with the vaccine. Animal studies indicated that all 16 viruses were nonlethal in mice, and four of six viruses showed reduced virulence in chickens upon intranasally inoculation. Importantly, the H7N9 viruses detected in this study exclusively bound to the avian-type receptors, having lost the capacity to bind to human-type receptors. Our study shows that vaccination slows the evolution of H7N9 virus by preventing its reassortment with other viruses and eliminates a harmful characteristic of H7N9 virus, namely its ability to bind to human-type receptors.


Assuntos
Galinhas , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Aviária , Vacinação , Animais , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/imunologia , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Galinhas/virologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Aviária/virologia , Influenza Aviária/prevenção & controle , Influenza Aviária/imunologia , Camundongos , Humanos , China , Evolução Molecular , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Influenza Humana/imunologia , Camundongos Endogâmicos BALB C , Virulência , Filogenia , Feminino , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/prevenção & controle , Aves Domésticas/virologia
2.
NPJ Vaccines ; 9(1): 152, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160189

RESUMO

The global spread of H5 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) viruses threatens poultry and public health. The continuous circulation of these viruses has led to their considerable genetic and antigenic evolution, resulting in the formation of eight subclades (2.3.4.4a-h). Here, we examined the antigenic sites that determine the antigenic differences between two H5 vaccine strains, H5-Re8 (clade 2.3.4.4g) and H5-Re11 (clade 2.3.4.4h). Epitope mapping data revealed that all eight identified antigenic sites were located within two classical antigenic regions, with five sites in region A (positions 115, 120, 124, 126, and 140) and three in region B (positions 151, 156, and 185). Through antigenic cartography analysis of mutants with varying numbers of substitutions, we confirmed that a combination of mutations in these eight sites reverses the antigenicity of H5-Re11 to that of H5-Re8, and vice versa. More importantly, our analyses identified H5-Re11_Q115L/R120S/A156T (H5-Re11 + 3) as a promising candidate for a broad-spectrum vaccine, positioned centrally in the antigenic map, and offering potential universal protection against all variants within the clade 2.3.4.4. H5-Re11 + 3 serum has better cross-reactivity than sera generated with other 2.3.4.4 vaccines, and H5-Re11 + 3 vaccine provided 100% protection of chickens against antigenically drifted H5 viruses from various 2.3.4.4 antigenic groups. Our findings suggest that antigenic regions A and B are immunodominant in H5 viruses, and that antigenic cartography-guided vaccine design is a promising strategy for selecting a broad-spectrum vaccine.

3.
Nat Microbiol ; 9(7): 1764-1777, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849624

RESUMO

Influenza virus infection is initiated by the attachment of the viral haemagglutinin (HA) protein to sialic acid receptors on the host cell surface. Most virus particles enter cells through clathrin-mediated endocytosis (CME). However, it is unclear how viral binding signals are transmitted through the plasma membrane triggering CME. Here we found that metabotropic glutamate receptor subtype 2 (mGluR2) and potassium calcium-activated channel subfamily M alpha 1 (KCa1.1) are involved in the initiation and completion of CME of influenza virus using an siRNA screen approach. Influenza virus HA directly interacted with mGluR2 and used it as an endocytic receptor to initiate CME. mGluR2 interacted and activated KCa1.1, leading to polymerization of F-actin, maturation of clathrin-coated pits and completion of the CME of influenza virus. Importantly, mGluR2-knockout mice were significantly more resistant to different influenza subtypes than the wild type. Therefore, blocking HA and mGluR2 interaction could be a promising host-directed antiviral strategy.


Assuntos
Endocitose , Camundongos Knockout , Receptores de Glutamato Metabotrópico , Animais , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Camundongos , Humanos , Internalização do Vírus , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Clatrina/metabolismo , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/metabolismo , Células HEK293 , Actinas/metabolismo , Cães , Células Madin Darby de Rim Canino , Receptores Virais/metabolismo , Receptores Virais/genética , Influenza Humana/virologia , Influenza Humana/metabolismo , Orthomyxoviridae/fisiologia , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA