Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Am Chem Soc ; 146(17): 11782-11791, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639158

RESUMO

Metal halide perovskite materials inherently possess imperfections, particularly under nonequilibrium conditions, such as exposure to light or heat. To tackle this challenge, we introduced stearate ligand-capped nickel oxide (NiOx), a redox-sensitive metal oxide with variable valence, into perovskite intermediate films. The integration of NiOx improved the efficiency and stability of perovskite solar cells (PSCs) by offering multifunctional roles: (1) chemical passivation for ongoing defect repair, (2) energetic passivation to bolster defect tolerance, and (3) field-effect passivation to mitigate charge accumulation. Employing a synergistic approach that tailored these three passivation mechanisms led to a substantial increase in the devices' efficiencies. The target cell (0.12 cm2) and module (18 cm2) exhibited efficiencies of 24.0 and 22.9%, respectively. Notably, the encapsulated modules maintained almost 100 and 87% of the initial efficiencies after operating for 1100 h at the maximum power point (60 °C, 50% RH) and 2000 h of damp-heat testing (85 °C, 85% RH), respectively. Outdoor real-time tests further validated the commercial viability of the NiOx-assisted PSMs. The proposed passivation strategy provides a practical and uncomplicated approach for fabricating high-efficiency and stable photovoltaics.

2.
J Am Chem Soc ; 145(21): 11818-11828, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37196315

RESUMO

Many enzymes use adaptive frameworks to preorganize substrates, accommodate various structural and electronic demands of intermediates, and accelerate related catalysis. Inspired by biological systems, a Ru-based molecular water oxidation catalyst containing a configurationally labile ligand [2,2':6',2″-terpyridine]-6,6″-disulfonate was designed to mimic enzymatic framework, in which the sulfonate coordination is highly flexible and functions as both an electron donor to stabilize high-valent Ru and a proton acceptor to accelerate water dissociation, thus boosting the catalytic water oxidation performance thermodynamically and kinetically. The combination of single-crystal X-ray analysis, various temperature NMR, electrochemical techniques, and DFT calculations was utilized to investigate the fundamental role of the self-adaptive ligand, demonstrating that the on-demand configurational changes give rise to fast catalytic kinetics with a turnover frequency (TOF) over 2000 s-1, which is compared to oxygen-evolving complex (OEC) in natural photosynthesis.

3.
J Am Chem Soc ; 145(36): 20081-20087, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37639328

RESUMO

Developing cost-effective metal electrodes is essential for reducing the overall cost of perovskite solar cells (PSCs). Although copper is highly conductive and economical, it is rarely used as a positive electrode in efficient n-i-p PSCs due to its unmatched Fermi level and low oxidation threshold. We report herein that modification for the inner surface of electrodes using mercaptopyridine-based molecules readily tunes the electronic and chemical properties of copper, which has been achieved by fine-tuning the substituents of mercaptopyridines. The systematic adjustment for the Fermi level and oxidation potential of copper facilitates interfacial hole extraction and enhances the oxidation resistance of copper electrodes, which enables pure copper electrodes to be used in high-performance n-i-p PSCs with different hole transport materials. The resulting PSCs with copper electrodes display excellent power conversion efficiency and long-term stability, even comparable to those of the gold electrodes, showing great potential in the manufacturing and commercialization of PSCs.

4.
J Chem Inf Model ; 63(8): 2483-2494, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37022803

RESUMO

The ERK pathway is one of the most important signaling cascades involved in tumorigenesis. So far, eight noncovalent inhibitors of RAF and MEK kinases in the ERK pathway have been approved by the FDA for the treatment of cancers; however, their efficacies are limited due to various resistance mechanisms. There is an urgent need to develop novel targeted covalent inhibitors. Here we report a systematic study of the covalent ligandabilities of the ERK pathway kinases (ARAF, BRAF, CRAF, KSR1, KSR2, MEK1, MEK2, ERK1, and ERK2) using constant pH molecular dynamics titration and pocket analysis. Our data revealed that the hinge GK (gate keeper)+3 cysteine in RAF family kinases (ARAF, BRAF, CRAF, KSR1, and KSR2) and the back loop cysteine in MEK1 and MEK2 are reactive and ligandable. Structure analysis suggests that the type II inhibitors belvarafenib and GW5074 may be used as scaffolds for designing pan-RAF or CRAF-selective covalent inhibitors directed at the GK+3 cysteine, while the type III inhibitor cobimetinib may be modified to label the back loop cysteine in MEK1/2. The reactivities and ligandabilities of the remote cysteine in MEK1/2 and the DFG-1 cysteine in MEK1/2 and ERK1/2 are also discussed. Our work provides a starting point for medicinal chemists to design novel covalent inhibitors of the ERK pathway kinases. The computational protocol is general and can be applied to the systematic evaluation of covalent ligandabilities of the human cysteinome.


Assuntos
MAP Quinase Quinase Quinases , Sistema de Sinalização das MAP Quinases , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , MAP Quinase Quinase Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Cisteína/metabolismo , Transdução de Sinais , Quinases raf/metabolismo
5.
Angew Chem Int Ed Engl ; 62(45): e202312276, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37728510

RESUMO

Developing low-cost and efficient photocatalysts to convert CO2 into valuable fuels is desirable to realize a carbon-neutral society. In this work, we report that polymer dots (Pdots) of poly[(9,9'-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-thiadiazole)] (PFBT), without adding any extra co-catalyst, can photocatalyze reduction of CO2 into CO in aqueous solution, rendering a CO production rate of 57 µmol g-1 h-1 with a detectable selectivity of up to 100 %. After 5 cycles of CO2 re-purging experiments, no distinct decline in CO amount and reaction rate was observed, indicating the promising photocatalytic stability of PFBT Pdots in the photocatalytic CO2 reduction reaction. A mechanistic study reveals that photoexcited PFBT Pdots are reduced by sacrificial donor first, then the reduced PFBT Pdots can bind CO2 and reduce it into CO via their intrinsic active sites. This work highlights the application of organic Pdots for CO2 reduction in aqueous solution, which therefore provides a strategy to develop highly efficient and environmentally friendly nanoparticulate photocatalysts for CO2 reduction.

6.
Angew Chem Int Ed Engl ; 62(9): e202217191, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36573904

RESUMO

Heterogeneous hydrogenation with hydrogen spillover has been demonstrated as an effective route to achieve high selectivity towards target products. More effort should be paid to understand the complicated correlation between the nature of supports and hydrogenation involving hydrogen spillover. Herein, we report the development of the hydrogenation system of hexagonal boron nitride (h-BN)-supported Pd nanoparticles for the hydrogenation of aldehydes/ketones to alcohols with hydrogen spillover. Nitrogen vacancies in h-BN determine the feasibility of hydrogen spillover from Pd to h-BN. The hydrogenation of aldehydes/ketones with hydrogen spillover from Pd proceeds on nitrogen vacancies on h-BN. The weak adsorption of alcohols to h-BN inhibits the deep hydrogenation of aldehydes/ketones, thus leading to high catalytic selectivity to alcohols. Moreover, the hydrogen spillover-based hydrogenation mechanism makes the catalyst system exhibit a high tolerance to CO poisoning.

7.
Small ; 18(42): e2204116, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36114151

RESUMO

The electrochemical nitrogen reduction reaction (NRR) to ammonia (NH3 ) is a potentially carbon-neutral and decentralized supplement to the established Haber-Bosch process. Catalytic activation of the highly stable dinitrogen molecules remains a great challenge. Especially metal-free nitrogen-doped carbon catalysts do not often reach the desired selectivity and ammonia production rates due to their low concentration of NRR active sites and possible instability of heteroatoms under electrochemical potential, which can even contribute to false positive results. In this context, the electrochemical activation of nitrogen-doped carbon electrocatalysts is an attractive, but not yet established method to create NRR catalytic sites. Herein, a metal-free C2 N material (HAT-700) is electrochemically etched prior to application in NRR to form active edge-sites originating from the removal of terminal nitrile groups. Resulting activated metal-free HAT-700-A shows remarkable catalytic activity in electrochemical nitrogen fixation with a maximum Faradaic efficiency of 11.4% and NH3 yield of 5.86 µg mg-1 cat h-1 . Experimental results and theoretical calculations are combined, and it is proposed that carbon radicals formed during activation together with adjacent pyridinic nitrogen atoms play a crucial role in nitrogen adsorption and activation. The results demonstrate the possibility to create catalytically active sites on purpose by etching labile functional groups prior to NRR.


Assuntos
Carbono , Fixação de Nitrogênio , Carbono/química , Amônia , Domínio Catalítico , Nitrogênio/química , Metais , Nitrilas
8.
J Am Chem Soc ; 143(6): 2484-2490, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33538597

RESUMO

Intercatalyst coupling has been widely applied in the functional mimics for binuclear synergy in natural metal enzymes. Herein, we introduce two facile and effective design strategies, which facilitate the coupling of two catalytic units via electrostatic interactions. The first system is based on a catalyst molecule functionalized with both a positively charged and a negatively charged group in the structure being able to pair with each other in an antiparallel manner arranged by electrostatic interactions. The other system consists of a mixture of two different of catalysts modified with either positively or negatively charged groups to generate intermolecular electrostatic interactions. Applying these designs to Ru(bda) (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water-oxidation catalysts improved the catalytic performance by more than an order of magnitude. The intermolecular electrostatic interactions in these two systems were fully identified by 1H NMR, TEM, SAXS, and electrical conductivity experiments. Molecular dynamics simulations further verified that electrostatic interactions contribute to the formation of prereactive dimers, which were found to play a key role in dramatically improving the catalytic performance. The successful strategies demonstrated here can be used in designing other intercatalyst coupling systems for activation and formation of small molecules and organic synthesis.

9.
J Am Chem Soc ; 141(26): 10247-10252, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31190538

RESUMO

Carboxylate groups have diverse functionalities in ligands of transition metal catalysts. Here we present a conceptually different function of the carboxylates: the oxide relay. It functions by providing an intramolecular nucleophilic oxygen close to the oxo group to facilitate O-O bond formation and at a later stage a remote electrophilic center to facilitate OH- nucleophilic attack. Empirical valence bond-molecular dynamics (EVB-MD) models were generated for key bond forming steps, diffusion coefficients and binding free energies from potential of mean force estimations were calculated from molecular dynamics (MD) simulations, activation free energies of chemical steps were calculated using density functional theory (DFT). The catalyst studied is the extremely active Ru(tda)(py)2 water oxidation catalyst. The combination of simulation methods allowed for estimation of the turnover frequencies, which were within 1 order of magnitude from the experimental results at different pH values. From the calculated reaction rates we find that at low pH the OH- anion nucleophilic attack is the rate-limiting step, which changes at high pH to the O-O bond formation step. Both steps are extremely rapid, and key to the efficiency is the oxide relay functionality of a pendant carboxylate group. We cannot exclude all alternative mechanisms and suggest isotope experiments using 18O-labeled water to support or invalidate the oxide relay mechanism. The functionality was discovered for a ruthenium catalyst, but since there is nothing in the mechanism restricting it to this metal, the oxide relay functionality could open new ways to design the next-generation water oxidation catalysts with improved activity.

10.
J Am Chem Soc ; 140(24): 7498-7503, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29798669

RESUMO

Immobilization of molecular catalysts to electrode surfaces can improve the recyclability and electron transfer rates. The drawback is that most experimental techniques and theoretical methods are not applicable. Here we present results from a study of a ruthenium water oxidation catalyst [RuVO(bda)L2] in explicit water at a carbon nanotube water interface, forming the key O-O bond between two 128 atom catalysts, all fully dynamically. Our methodology is based on a recently developed empirical valence bond (EVB) model. We follow the key steps of the reaction including diffusion of the catalysts at the interface, formation of the prereactive dimer, and the bond formation between the two catalysts. On the basis of the calculated parameters, we compute the turnover frequency (TOF) at the experimental loading, in excellent agreement with the experiments. The key O-O bond formation was significantly retarded at the surface, and limiting components were identified that could be improved by catalyst modification.

11.
Angew Chem Int Ed Engl ; 56(24): 6962-6965, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28493633

RESUMO

A ground-breaking empirical valence bond study for a soluble transition-metal complex is presented. The full reaction of catalyst monomers approaching and reacting in the RuV oxidation state were studied. Analysis of the solvation shell in the reactant and along the reaction coordinate revealed that the oxo itself is hydrophobic, which adds a significant driving force to form the dimer. The effect of the solvent on the reaction between the prereactive dimer and the product was small. The solvent seems to lower the barrier for the isoquinoline (isoq) complex while it is increased for pyridines. By comparing the reaction in the gas phase and solution, the proposed π-stacking interaction of the isoq ligands is found to be entirely driven by the water medium.

12.
Chem Commun (Camb) ; 60(48): 6162-6165, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38804570

RESUMO

A water oxidation catalyst Ru-bcs (bcs = 2,2'-bipyridine-6'-carboxylate-6-sulfonate) with a hybrid ligand was reported. Ru-bcs utilizes the electron-donating properties of carboxylate ligands and the on-demand coordination feature of sulfonate ligands to enable a low onset potential of 1.21 V vs. NHE and a high TOF over 1000 s-1 at pH 7. The adaptive chemistry uncovered in this work provides new perspectives for developing molecular catalysts with high efficiency under low driving forces.

13.
J Photochem Photobiol B ; 251: 112844, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224669

RESUMO

Gold nanoparticles (GNPs) are usually formed via a wet chemical method using gold (III) chloride trihydrate (GC), which is treated with stable reducing agents such as sodium citrate (SC). This study determines the effect of coloured light on the formation of GNPs by irradiation of SC after the addition of GC (SCGC) and the effect of the SCGC photolytic procedure on the suppression of WiDr colon cancer cells by forming reactive oxygen species. The absorbance of surface plasmon resonance peaks at 523 nm are 0.069 and 0.219 for SCGC when treated with blue light illumination (BLI) and violet light irradiation (VLI), respectively, whereas green and red light treatments have little or no effect. Most GNPs have diameters ranging from 3 to 15 nm, with a mean of 6 nm, when SCGC is exposed to VLI for 1.5 h. Anionic superoxide radicals (O2•-) are formed in a charge-transfer process after SCGC under VLI treatment; however, BLI treatment produces no significant reaction. Moreover, SCGC under VLI treatment proves to be considerably more effective at inhibiting WiDr cells than BLI treatment, as firstly reported in this study. The reduction rates for WiDr cells treated with SCGC under BLI and VLI at an intensity of 2.0 mW/cm2 for 1.5 h (energy dose, 10.8 J/cm2) are 4.1% and 57.7%, respectively. The suppression rates for WiDr cells treated with SCGC are inhibited in an irradiance-dependent manner, the inhibition percentages being 57.7%, 63.3%, and 80.2% achieved at VLI intensities of 2.0, 4.0, and 6.0 mW/cm2 for 1.5 h, respectively. Propidium iodide is a fluorescent dye that detects DNA changes after cell death. The number of propidium iodide-positive nuclei significantly increases in WiDr cells treated with SCGC under VLI, suggesting that SCGC photolysis under VLI is a potential treatment option for the photodynamic therapy process.


Assuntos
Neoplasias do Colo , Compostos de Ouro , Nanopartículas Metálicas , Humanos , Citrato de Sódio , Nanopartículas Metálicas/toxicidade , Ouro/farmacologia , Fotólise , Propídio , Neoplasias do Colo/tratamento farmacológico
14.
Chem Asian J ; 18(6): e202300051, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36852912

RESUMO

Surface and interface engineering has been considered as a promising strategy to enhance the performance of catalysts towards CO2 reduction. In their editorial to this special collection, guest editors Zhicheng Zhang, Zhen Zhang, Zhenyu Sun, Shaoqi Zhan and Guoxiong Wang provide a brief overview of this field and highlight the state-of-the-art contributions featured in this special collection.

15.
ACS Appl Mater Interfaces ; 15(37): 43431-43440, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37674322

RESUMO

Fenton-like radical processes are widely utilized to explain catalytic mechanisms of peroxidase-like nanozymes, which exhibit remarkable catalytic activity, cost-effectiveness, and stability. However, there is still a need for a comprehensive understanding of the formation, stabilization, and transformation of such radicals. Herein, a copper formate-based nanozyme (Cuf-TMB) was fabricated via a pre-catalytic strategy under ambient conditions. The as-prepared nanozyme shows comparable catalytic activity (Km, 1.02 × 10-5 mM-1; Kcat, 3.09 × 10-2 s-1) and kinetics to those of natural peroxidase toward H2O2 decomposition. This is attributed to the feasible oxidation by *OH species via the *O intermediate, as indicated by density functional theory calculations. The key ·OH radicals were detected to be stable for over 52 days and can be released in a controlled manner during the catalytic process via in situ electron spin-resonance spectroscopy measurements. Based on the understanding, an ultrasensitive biosensing platform was constructed for the sensitive monitoring of biochemical indicators in clinic settings.


Assuntos
Cobre , Peróxido de Hidrogênio , Preparações de Ação Retardada , Formiatos , Peroxidase , Peroxidases , Corantes
16.
Adv Sci (Weinh) ; 10(28): e2302623, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37544912

RESUMO

Electrochemical nitrate reduction to ammonia powered by renewable electricity is not only a promising alternative to the established energy-intense and non-ecofriendly Haber-Bosch reaction for ammonia generation but also a future contributor to the ever-more important denitrification schemes. Nevertheless, this reaction is still impeded by the lack of understanding for the underlying reaction mechanism on the molecular scale which is necessary for the rational design of active, selective, and stable electrocatalysts. Herein, a novel single-site bismuth catalyst (Bi-N-C) for nitrate electroreduction is reported to produce ammonia with maximum Faradaic efficiency of 88.7% and at a high rate of 1.38 mg h-1 mgcat -1 at -0.35 V versus reversible hydrogen electrode (RHE). The active center (described as BiN2 C2 ) is uncovered by detailed structural analysis. Coupled density functional theory calculations are applied to analyze the reaction mechanism and potential rate-limiting steps for nitrate reduction based on the BiN2 C2 model. The findings highlight the importance of model catalysts to utilize the potential of nitrate reduction as a new-generation nitrogen-management technology based on the construction of efficient active sites.

17.
Photodiagnosis Photodyn Ther ; 44: 103810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37748698

RESUMO

Riboflavin-5'-phosphate (FMN), an innocuous product of riboflavin (RF) phosphorylation, is vital for humans. FMN is sensitive to light illumination, as indicated by reactive oxygen species (ROS) formation. This investigation was undertaken to evaluate the influence of blue light illumination (BLI) and violet light illumination (VLI) upon FMN to develop a method to inhibit WiDr colon cancer cells by FMN photolysis. When FMN is subjected to BLI and VLI, it inhibits WiDr colon cancer cells by generating superoxide radical anions (O2•-). The respective reduction rates are 42.6 and 81.9 % in WiDr colon cancer cells for FMN treated with BLI and VLI at 20 W/m2 for 0.5 h. FMN treated with VLI inhibits WiDr colon cancer cells more effectively than BLI. Propidium iodide (PI) is a fluorescent dye that is used to detect abnormal DNA due to cell death by apoptosis or necrosis. The PI-positive count for nuclei increased significantly for the WiDr colon cancer cells that were treated with FMN under VLI at 20 W/m2 for 0.5 h. FMN photolysis achieved using VLI allows efficient photodynamic therapy (PDT) by triggering the cytotoxicity of FMN on WiDr colon cancer cells.


Assuntos
Neoplasias do Colo , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Luz , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Riboflavina/farmacologia , Neoplasias do Colo/tratamento farmacológico , Fosfatos
18.
J Med Chem ; 65(2): 1525-1535, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34647463

RESUMO

The front pocket (FP) N-terminal cap (Ncap) cysteine is the most popular site of covalent modification in kinases. A long-standing hypothesis associates the Ncap position with cysteine hyper-reactivity; however, traditional computational predictions suggest that the FP Ncap cysteines are predominantly unreactive. Here we applied the state-of-the-art continuous constant pH molecular dynamics (CpHMD) to test the Ncap hypothesis. Simulations found that the Ncap cysteines of BTK/BMX/TEC/ITK/TXK, JAK3, and MKK7 are reactive to varying degrees; however, those of BLK and EGFR/ERBB2/ERBB4 possessing a Ncap+3 aspartate are unreactive. Analysis suggested that hydrogen bonding and electrostatic interactions drive the reactivity, and their absence renders the Ncap cysteine unreactive. To further test the Ncap hypothesis, we examined the FP Ncap+2 cysteines in JNK1/JNK2/JNK3 and CASK. Our work offers a systematic understanding of the cysteine structure-reactivity relationship and illustrates the use of CpHMD to differentiate cysteines toward the design of targeted covalent inhibitors with reduced chemical reactivities.


Assuntos
Simulação por Computador , Cisteína/química , Guanilato Quinases/química , MAP Quinase Quinase 4/química , Simulação de Dinâmica Molecular , Cisteína/metabolismo , Guanilato Quinases/metabolismo , Humanos , Concentração de Íons de Hidrogênio , MAP Quinase Quinase 4/metabolismo , Modelos Moleculares , Conformação Proteica
19.
RSC Med Chem ; 13(1): 54-63, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35224496

RESUMO

Mitogen-activated protein kinases (MAPK) are important therapeutic targets, and yet no inhibitors have advanced to the market. Here we applied the GPU-accelerated continuous constant pH molecular dynamics (CpHMD) to calculate the pK a's and profile the cysteine reactivities of all 14 MAPKs for assisting the targeted covalent inhibitor design. The simulations not only recapitulated but also rationalized the reactive cysteines in the front pocket of JNK1/2/3 and the extended front pocket of p38α. Interestingly, the DFG - 1 cysteine in the DFG-in conformation of ERK1/ERK2 was found somewhat reactive or unreactive; however, simulations of MKK7 showed that switching to the DFG-out conformation makes the DFG - 1 cysteine reactive, suggesting the advantage of type II covalent inhibitors. Additionally, the simulations prospectively predicted several druggable cysteine and lysine sites, including the αH head cysteine in JNK1/3 and DFG + 6 cysteine in JNK2, corroborating the chemical proteomic screening data. Given the low cost and the ability to offer physics-based rationales, we envision CpHMD simulations to complement the chemo-proteomic platform for systematic profiling cysteine reactivities for targeted covalent drug discovery.

20.
Small Methods ; 6(7): e2200265, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35484477

RESUMO

The search for building hierarchical porous materials with accelerated photo-induced electrons and charge-carrier separation is important because they hold great promise for applications in various fields. Here, a facile strategy of confining metal-organic framework (MOF) in the 1D channel of the 2D covalent organic framework (COF) to construct a novel COF@MOF micro/nanopore network is proposed. Specifically, a nitrogen-riched COF (TTA-BPDA-COF) is chosen as the platform for in-situ growth of a Co-based MOF (ZIF-L-Co) to form a TTA-BPDA-COF@ZIF-L-Co hybrid material. The hierarchical porous structure endows TTA-BPDA-COF@ZIF-L-Co with superior adsorption capacity. In addition, the integration of TTA-BPDA-COF and ZIF-L-Co forms a Z-scheme photocatalytic system, which significantly improved the redox properties and accelerated the separation of photogenerated charges and holes, achieving great improvement in photocatalytic activity. This confinement engineering strategy provides a new idea to construct a versatile molecular-material photocatalytic platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA