Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurourol Urodyn ; 41(3): 756-764, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35132690

RESUMO

BACKGROUND: To study the influences of posterior tibial nerve stimulation (PTNS) on neurogenic bladder and the expression of transient receptor potential (TRP) channels and P2X receptors in rats with spinal cord injury (SCI) and explore the possible mechanism. METHODS: SCI model was established by modified Allen's method and PTNS was performed. Urodynamic indexes and Haematoxylin and Eosine staining of bladder tissue were used to evaluate the therapeutic effect. The expression of TRP channels and P2X receptors in the bladder and dorsal root ganglia (DRG) was detected by real-time PCR and Western blot. RESULTS: The low compliance of bladder in treatment group was significantly improved compared with SCI group, and the infiltration of inflammatory cells in bladder tissue was significantly reduced. At the same time, the expression of TRP and P2X in bladder and DRG was partially restored after the treatment of PTNS. CONCLUSIONS: PTNS is an effective therapy for SCI-induced neurogenic bladder via the TRP/P2X signaling pathway.


Assuntos
Traumatismos da Medula Espinal , Canais de Potencial de Receptor Transitório , Bexiga Urinaria Neurogênica , Animais , Feminino , Humanos , Masculino , Ratos , Transdução de Sinais , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Nervo Tibial , Canais de Potencial de Receptor Transitório/metabolismo , Bexiga Urinária/metabolismo , Bexiga Urinaria Neurogênica/etiologia , Bexiga Urinaria Neurogênica/terapia
2.
Chemosphere ; 283: 131186, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34157621

RESUMO

Phytoremediation as an efficient and eco-friendly soil detoxification method has received widespread attention. In this study, two newly screened Chromium (Cr) reducing strains (Bacillus sp. AK-1 and Lysinibacillus sp. AK-5) were used to remediate Cr contaminated soil in conjunction with the application of hyperaccumulator tall fescue (Festuca arundinacea), thus establishing a soil Cr decontamination system. In this system, soil urease and dehydrogenase activities were increased, the malondialdehyde (MDA) contents in leaves of tall fescue were significantly decreased, while glutathione (GSH) contents increased. In terms of Cr fractions, the proportion of acetic acid extractable Cr decreased by 12.82-20.00% in treatment groups, respectively, compared with CK, while residual Cr increased by 9.41-22.37%. Moreover, biomass, root length and shoot length of tall fescue in treatment groups increased by 80.77-139.74%, 60.85-68.04%, 7.06-27.10%, respectively. In addition, the root system of tall fescue accumulated 303.887-372.167 mg kg-1 of Cr, and the aboveground part accumulated 16.289-19.289 mg kg-1 of Cr. Therefore, the application of strains AK-1 and AK-5 reduced the toxicity of Cr to plants and greatly increased plant accumulation potential, which indicated that AK-1 and AK-5 could improve removal efficiency of phytoremediation in Cr contaminated soil by reducing its bio-toxicity and promoting growth of tall fescue growth.


Assuntos
Bacillus , Festuca , Poluentes do Solo , Biodegradação Ambiental , Cromo/toxicidade , Descontaminação , Solo , Poluentes do Solo/toxicidade
3.
Sci Total Environ ; 645: 702-709, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031328

RESUMO

On account of the potential in immobilizing metals and improving soil environment, various biochar materials have been extensively applied in environmental remediation. The purpose of this experiment was to evaluate the effect of modified coconut shell biochar (MCSB) on the availability of metals and soil biological activity in multi-metals (cadmium (Cd), nickel (Ni) and zinc (Zn)) contaminated soil. MCSB was obtained from coconut shell biochar (CSB) by hydrochloric acid pickling and ultrasonication, which has significantly improved its surface functional groups and microcosmic pore structure. Sandy soil samples were incubated at 25 °C amended with MCSB or CSB by 0%, 2.5% and 5% addition for 63 days, respectively. The results showed that the acid soluble Cd, Ni and Zn decreased by 30.1%, 57.2% and 12.7%, respectively, in groups with 5% MCSB addition, which indicated MCSB had a better effect on immobilizing metals compared with CSB. In addition, higher soil biological activities were detected in different treatments compared with control (CK). Especially, the maximum bacterial number was found in 5% MCSB treatment, which increased by 149.43% compared with CK. Accordingly, our results suggested that MCSB could be used as an ameliorant to immobilize heavy metals in contaminated soils and improve soil physicochemical and biological properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA