Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916914

RESUMO

Alternative splicing (AS) plays crucial roles in regulating various biological processes in plants. However, the genetic mechanisms underlying AS and its role in controlling important agronomic traits in rice (Oryza sativa) remain poorly understood. In this study, we explored AS in rice leaves and panicles using the rice minicore collection. Our analysis revealed a high level of transcript isoform diversity, with approximately one fifth of potential isoforms acting as major transcripts in both tissues. Regarding the genetic mechanism of AS, we found that the splicing of 833 genes in the leaf and 1,230 genes in the panicle was affected by cis-genetic variation. Twenty-one percent of these AS events could only be explained by large structural variations. Approximately 77.5% of genes with significant splicing quantitative trait loci (sGenes) exhibited tissue-specific regulation, and AS can cause 26.9% (leaf) and 23.6% (panicle) of sGenes to have altered, lost or gained functional domains. Additionally, through splicing-phenotype association analysis, we identified phosphate-starvation induced RING-type E3 ligase (OsPIE1; LOC_Os01g72480), whose splicing ratio was significantly associated with plant height. In summary, this study provides an understanding of AS in rice and its contribution to the regulation of important agronomic traits.

2.
J Integr Plant Biol ; 66(2): 196-207, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158885

RESUMO

Rice (Oryza sativa) is a significant crop worldwide with a genome shaped by various evolutionary factors. Rice centromeres are crucial for chromosome segregation, and contain some unreported genes. Due to the diverse and complex centromere region, a comprehensive understanding of rice centromere structure and function at the population level is needed. We constructed a high-quality centromere map based on the rice super pan-genome consisting of a 251-accession panel comprising both cultivated and wild species of Asian and African rice. We showed that rice centromeres have diverse satellite repeat CentO, which vary across chromosomes and subpopulations, reflecting their distinct evolutionary patterns. We also revealed that long terminal repeats (LTRs), especially young Gypsy-type LTRs, are abundant in the peripheral CentO-enriched regions and drive rice centromere expansion and evolution. Furthermore, high-quality genome assembly and complete telomere-to-telomere (T2T) reference genome enable us to obtain more centromeric genome information despite mapping and cloning of centromere genes being challenging. We investigated the association between structural variations and gene expression in the rice centromere. A centromere gene, OsMAB, which positively regulates rice tiller number, was further confirmed by expression quantitative trait loci, haplotype analysis and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 methods. By revealing the new insights into the evolutionary patterns and biological roles of rice centromeres, our finding will facilitate future research on centromere biology and crop improvement.


Assuntos
DNA Satélite , Oryza , DNA Satélite/metabolismo , Oryza/genética , Oryza/metabolismo , Sequência de Bases , Centrômero/genética , Genoma de Planta/genética
3.
Food Chem ; 460(Pt 3): 140670, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39106747

RESUMO

Anthocyanins are natural flavonoids with a high antioxidant power and many associated health benefits, but most rice produce little amounts of these compounds. In this study, 141 MYB transcription factors in 15 chromosomes, including the nucleus-localised ZlMYB1 (Zla03G003370) and ZlMYB2 (Zla15G015220), were discovered in Zizania latifolia. Overexpression of ZlMYB1 or ZlMYB2 in rice seeds induced black pericarps, and flavonoid content, antioxidant capacity, and α-glucosidase and tyrosinase inhibition effects significantly increased compared to those in the control seeds. ZlMYB1 and ZlMYB2 overexpression induced the upregulation of 764 and 279 genes, respectively, and the upregulation of 162 and 157 flavonoids, respectively, linked to a black pericarp phenotype. The expression of flavonoid 3'-hydroxylase and UDP-glycose flavonoid glycosyltransferase, as well as the activities of these enzymes, increased significantly in response to ZlMYB1 or ZlMYB2 overexpression. This study systematically confirmed that the overexpression of ZlMYB1 and ZlMYB2 promotes flavonoid biosynthesis (especially of anthocyanins) in rice.

4.
Natl Sci Rev ; 11(6): nwae188, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38962716

RESUMO

Transposable elements (TEs) are ubiquitous genomic components and hard to study due to being highly repetitive. Here we assembled 232 chromosome-level genomes based on long-read sequencing data. Coupling the 232 genomes with 15 existing assemblies, we developed a pan-TE map comprising both cultivated and wild Asian rice. We detected 177 084 high-quality TE variations and inferred their derived state using outgroups. We found TEs were one source of phenotypic variation during rice domestication and differentiation. We identified 1246 genes whose expression variation was associated with TEs but not single-nucleotide polymorphisms (SNPs), such as OsRbohB, and validated OsRbohB's relative expression activity using a dual-Luciferase (LUC) reporter assays system. Our pan-TE map allowed us to detect multiple novel loci associated with agronomic traits. Collectively, our findings highlight the contributions of TEs to domestication, differentiation and agronomic traits in rice, and there is massive potential for gene cloning and molecular breeding by the high-quality Asian pan-TE map we generated.

5.
Natl Sci Rev ; 11(4): nwae043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38650829

RESUMO

For sessile plants, gene expression plays a pivotal role in responding to salinity stress by activating or suppressing specific genes. However, our knowledge of genetic variations governing gene expression in response to salt stress remains limited in natural germplasm. Through transcriptome analysis of the Global Mini-Core Rice Collection consisting of a panel of 202 accessions, we identified 22 345 and 27 610 expression quantitative trait loci associated with the expression of 7787 and 9361 eGenes under normal and salt-stress conditions, respectively, leveraging the super pan-genome map. Notably, combined with genome-wide association studies, we swiftly pinpointed the potential candidate gene STG5-a major salt-tolerant locus known as qSTS5. Intriguingly, STG5 is required for maintaining Na+/K+ homeostasis by directly regulating the transcription of multiple members of the OsHKT gene family. Our study sheds light on how genetic variants influence the dynamic changes in gene expression responding to salinity stress and provides a valuable resource for the mining of salt-tolerant genes in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA