Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8013): 951-956, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632403

RESUMO

Metabotropic glutamate receptors belong to a family of G protein-coupled receptors that are obligate dimers and possess a large extracellular ligand-binding domain that is linked via a cysteine-rich domain to their 7-transmembrane domain1. Upon activation, these receptors undergo a large conformational change to transmit the ligand binding signal from the extracellular ligand-binding domain to the G protein-coupling 7-transmembrane domain2. In this manuscript, we propose a model for a sequential, multistep activation mechanism of metabotropic glutamate receptor subtype 5. We present a series of structures in lipid nanodiscs, from inactive to fully active, including agonist-bound intermediate states. Further, using bulk and single-molecule fluorescence imaging, we reveal distinct receptor conformations upon allosteric modulator and G protein binding.


Assuntos
Ligantes , Domínios Proteicos , Receptor de Glutamato Metabotrópico 5 , Humanos , Regulação Alostérica/efeitos dos fármacos , Fluorescência , Modelos Moleculares , Ligação Proteica , Receptor de Glutamato Metabotrópico 5/agonistas , Receptor de Glutamato Metabotrópico 5/química , Receptor de Glutamato Metabotrópico 5/metabolismo , Imagem Individual de Molécula , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo
2.
Nature ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961287

RESUMO

The µ-opioid receptor (µOR) is a well-established target for analgesia1, yet conventional opioid receptor agonists cause serious adverse effects, notably addiction and respiratory depression. These factors have contributed to the current opioid overdose epidemic driven by fentanyl2, a highly potent synthetic opioid. µOR negative allosteric modulators (NAMs) may serve as useful tools in preventing opioid overdose deaths, but promising chemical scaffolds remain elusive. Here we screened a large DNA-encoded chemical library against inactive µOR, counter-screening with active, G-protein and agonist-bound receptor to 'steer' hits towards conformationally selective modulators. We discovered a NAM compound with high and selective enrichment to inactive µOR that enhances the affinity of the key opioid overdose reversal molecule, naloxone. The NAM works cooperatively with naloxone to potently block opioid agonist signalling. Using cryogenic electron microscopy, we demonstrate that the NAM accomplishes this effect by binding a site on the extracellular vestibule in direct contact with naloxone while stabilizing a distinct inactive conformation of the extracellular portions of the second and seventh transmembrane helices. The NAM alters orthosteric ligand kinetics in therapeutically desirable ways and works cooperatively with low doses of naloxone to effectively inhibit various morphine-induced and fentanyl-induced behavioural effects in vivo while minimizing withdrawal behaviours. Our results provide detailed structural insights into the mechanism of negative allosteric modulation of the µOR and demonstrate how this can be exploited in vivo.

3.
Mol Cell ; 82(10): 1821-1835.e6, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35381197

RESUMO

GLS1 orchestrates glutaminolysis and promotes cell proliferation when glutamine is abundant by regenerating TCA cycle intermediates and supporting redox homeostasis. CB-839, an inhibitor of GLS1, is currently under clinical investigation for a variety of cancer types. Here, we show that GLS1 facilitates apoptosis when glutamine is deprived. Mechanistically, the absence of exogenous glutamine sufficiently reduces glutamate levels to convert dimeric GLS1 to a self-assembled, extremely low-Km filamentous polymer. GLS1 filaments possess an enhanced catalytic activity, which further depletes intracellular glutamine. Functionally, filamentous GLS1-dependent glutamine scarcity leads to inadequate synthesis of asparagine and mitogenome-encoded proteins, resulting in ROS-induced apoptosis that can be rescued by asparagine supplementation. Physiologically, we observed GLS1 filaments in solid tumors and validated the tumor-suppressive role of constitutively active, filamentous GLS1 mutants K320A and S482C in xenograft models. Our results change our understanding of GLS1 in cancer metabolism and suggest the therapeutic potential of promoting GLS1 filament formation.


Assuntos
Glutaminase , Glutamina , Apoptose , Asparagina/genética , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , Espécies Reativas de Oxigênio
4.
Mol Cell ; 82(23): 4519-4536.e7, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384137

RESUMO

Nutrient sensing and damage sensing are two fundamental processes in living organisms. While hyperglycemia is frequently linked to diabetes-related vulnerability to microbial infection, how body glucose levels affect innate immune responses to microbial invasion is not fully understood. Here, we surprisingly found that viral infection led to a rapid and dramatic decrease in blood glucose levels in rodents, leading to robust AMPK activation. AMPK, once activated, directly phosphorylates TBK1 at S511, which triggers IRF3 recruitment and the assembly of MAVS or STING signalosomes. Consistently, ablation or inhibition of AMPK, knockin of TBK1-S511A, or increased glucose levels compromised nucleic acid sensing, while boosting AMPK-TBK1 cascade by AICAR or TBK1-S511E knockin improves antiviral immunity substantially in various animal models. Thus, we identify TBK1 as an AMPK substrate, reveal the molecular mechanism coupling a dual sensing of glucose and nuclei acids, and report its physiological necessity in antiviral defense.


Assuntos
Proteínas Quinases Ativadas por AMP , Ácidos Nucleicos , Animais , Proteínas Quinases Ativadas por AMP/genética , Imunidade Inata , Antivirais , Glucose
5.
Nature ; 603(7899): 159-165, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197629

RESUMO

Metformin, the most prescribed antidiabetic medicine, has shown other benefits such as anti-ageing and anticancer effects1-4. For clinical doses of metformin, AMP-activated protein kinase (AMPK) has a major role in its mechanism of action4,5; however, the direct molecular target of metformin remains unknown. Here we show that clinically relevant concentrations of metformin inhibit the lysosomal proton pump v-ATPase, which is a central node for AMPK activation following glucose starvation6. We synthesize a photoactive metformin probe and identify PEN2, a subunit of γ-secretase7, as a binding partner of metformin with a dissociation constant at micromolar levels. Metformin-bound PEN2 forms a complex with ATP6AP1, a subunit of the v-ATPase8, which leads to the inhibition of v-ATPase and the activation of AMPK without effects on cellular AMP levels. Knockout of PEN2 or re-introduction of a PEN2 mutant that does not bind ATP6AP1 blunts AMPK activation. In vivo, liver-specific knockout of Pen2 abolishes metformin-mediated reduction of hepatic fat content, whereas intestine-specific knockout of Pen2 impairs its glucose-lowering effects. Furthermore, knockdown of pen-2 in Caenorhabditis elegans abrogates metformin-induced extension of lifespan. Together, these findings reveal that metformin binds PEN2 and initiates a signalling route that intersects, through ATP6AP1, the lysosomal glucose-sensing pathway for AMPK activation. This ensures that metformin exerts its therapeutic benefits in patients without substantial adverse effects.


Assuntos
Hipoglicemiantes , Metformina , ATPases Vacuolares Próton-Translocadoras , Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina Trifosfatases/metabolismo , Secretases da Proteína Precursora do Amiloide , Animais , Caenorhabditis elegans/metabolismo , Diabetes Mellitus/tratamento farmacológico , Glucose/metabolismo , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Lisossomos/metabolismo , Proteínas de Membrana , Metformina/agonistas , Metformina/metabolismo , Metformina/farmacologia , ATPases Vacuolares Próton-Translocadoras/metabolismo
6.
EMBO J ; 42(20): e113743, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37661833

RESUMO

Mitochondria play essential roles in cancer cell adaptation to hypoxia, but the underlying mechanisms remain elusive. Through mitochondrial proteomic profiling, we here find that the prolyl hydroxylase EglN1 (PHD2) accumulates on mitochondria under hypoxia. EglN1 substrate-binding region in the ß2ß3 loop is responsible for its mitochondrial translocation and contributes to breast tumor growth. Furthermore, we identify AMP-activated protein kinase alpha (AMPKα) as an EglN1 substrate on mitochondria. The EglN1-AMPKα interaction is essential for their mutual mitochondrial translocation. After EglN1 prolyl-hydroxylates AMPKα under normoxia, they rapidly dissociate following prolyl-hydroxylation, leading to their immediate release from mitochondria. In contrast, hypoxia results in constant EglN1-AMPKα interaction and their accumulation on mitochondria, leading to the formation of a Ca2+ /calmodulin-dependent protein kinase 2 (CaMKK2)-EglN1-AMPKα complex to activate AMPKα phosphorylation, ensuring metabolic homeostasis and breast tumor growth. Our findings identify EglN1 as an oxygen-sensitive metabolic checkpoint signaling hypoxic stress to mitochondria through its ß2ß3 loop region, suggesting a potential therapeutic target for breast cancer.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias da Mama , Feminino , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Mitocôndrias/metabolismo , Proteômica
7.
Nature ; 595(7867): 450-454, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194039

RESUMO

Family C G-protein-coupled receptors (GPCRs) operate as obligate dimers with extracellular domains that recognize small ligands, leading to G-protein activation on the transmembrane (TM) domains of these receptors by an unknown mechanism1. Here we show structures of homodimers of the family C metabotropic glutamate receptor 2 (mGlu2) in distinct functional states and in complex with heterotrimeric Gi. Upon activation of the extracellular domain, the two transmembrane domains undergo extensive rearrangement in relative orientation to establish an asymmetric TM6-TM6 interface that promotes conformational changes in the cytoplasmic domain of one protomer. Nucleotide-bound Gi can be observed pre-coupled to inactive mGlu2, but its transition to the nucleotide-free form seems to depend on establishing the active-state TM6-TM6 interface. In contrast to family A and B GPCRs, G-protein coupling does not involve the cytoplasmic opening of TM6 but is facilitated through the coordination of intracellular loops 2 and 3, as well as a critical contribution from the C terminus of the receptor. The findings highlight the synergy of global and local conformational transitions to facilitate a new mode of G-protein activation.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/química , Humanos , Modelos Moleculares , Multimerização Proteica , Receptores de Glutamato Metabotrópico/química
8.
Nature ; 595(7867): 455-459, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194040

RESUMO

The calcium-sensing receptor (CaSR), a cell-surface sensor for Ca2+, is the master regulator of calcium homeostasis in humans and is the target of calcimimetic drugs for the treatment of parathyroid disorders1. CaSR is a family C G-protein-coupled receptor2 that functions as an obligate homodimer, with each protomer composed of a Ca2+-binding extracellular domain and a seven-transmembrane-helix domain (7TM) that activates heterotrimeric G proteins. Here we present cryo-electron microscopy structures of near-full-length human CaSR in inactive or active states bound to Ca2+ and various calcilytic or calcimimetic drug molecules. We show that, upon activation, the CaSR homodimer adopts an asymmetric 7TM configuration that primes one protomer for G-protein coupling. This asymmetry is stabilized by 7TM-targeting calcimimetic drugs adopting distinctly different poses in the two protomers, whereas the binding of a calcilytic drug locks CaSR 7TMs in an inactive symmetric configuration. These results provide a detailed structural framework for CaSR activation and the rational design of therapeutics targeting this receptor.


Assuntos
Cálcio/metabolismo , Microscopia Crioeletrônica , Multimerização Proteica , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/metabolismo , Cálcio/química , Humanos , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Receptores de Detecção de Cálcio/ultraestrutura , Especificidade por Substrato
9.
J Biol Chem ; : 107485, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906255

RESUMO

Hyperuricemia (HUA) is a metabolic disorder characterized by elevated serum uric acid (UA), primarily attributed to the hepatic overproduction and renal underexcretion of UA. Despite the elucidation of molecular pathways associated with this underexcretion, the etiology of HUA remains largely unknown. In our study, using by Uox knockout rats, HUA mouse and cell line models, we discovered that the increased WWC1 levels were associated with decreased renal UA excretion. Additionally, using by knockdown and overexpression approaches, we found that WWC1 inhibited UA excretion in renal tubular epithelial cells. Mechanistically, WWC1 activated the Hippo pathway, leading to phosphorylation and subsequent degradation of the downstream transcription factor YAP1, thereby impairing the ABCG2 and OAT3 expression through transcriptional regulation. Consequently, this reduction leaded to a decrease in UA excretion in renal tubular epithelial cells. In conclusion, our study has elucidated the role of upregulated WWC1 in renal tubular epithelial cells inhibiting the excretion of UA in the kidneys and causing HUA.

11.
Cell Mol Life Sci ; 81(1): 26, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212548

RESUMO

Mitochondria serve as essential organelles that play a key role in regulating stem cell fate. Mitochondrial dysfunction and stem cell exhaustion are two of the nine distinct hallmarks of aging. Emerging research suggests that epigenetic modification of mitochondria-encoded genes and the regulation of epigenetics by mitochondrial metabolites have an impact on stem cell aging or differentiation. Here, we review how key mitochondrial metabolites and behaviors regulate stem cell fate through an epigenetic approach. Gaining insight into how mitochondria regulate stem cell fate will help us manufacture and preserve clinical-grade stem cells under strict quality control standards, contributing to the development of aging-associated organ dysfunction and disease.


Assuntos
Mitocôndrias , Células-Tronco , Diferenciação Celular/genética , Mitocôndrias/metabolismo , Epigênese Genética , Senescência Celular , DNA Mitocondrial/genética
12.
Mol Cell ; 62(3): 359-370, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153534

RESUMO

Metabolic reprogramming is fundamental to biological homeostasis, enabling cells to adjust metabolic routes after sensing altered availability of fuels and growth factors. ULK1 and ULK2 represent key integrators that relay metabolic stress signals to the autophagy machinery. Here, we demonstrate that, during deprivation of amino acid and growth factors, ULK1/2 directly phosphorylate key glycolytic enzymes including hexokinase (HK), phosphofructokinase 1 (PFK1), enolase 1 (ENO1), and the gluconeogenic enzyme fructose-1,6-bisphosphatase (FBP1). Phosphorylation of these enzymes leads to enhanced HK activity to sustain glucose uptake but reduced activity of FBP1 to block the gluconeogenic route and reduced activity of PFK1 and ENO1 to moderate drop of glucose-6-phosphate and to repartition more carbon flux to pentose phosphate pathway (PPP), maintaining cellular energy and redox homeostasis at cellular and organismal levels. These results identify ULK1/2 as a bifurcate-signaling node that sustains glucose metabolic fluxes besides initiation of autophagy in response to nutritional deprivation.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Glucose/metabolismo , Glicólise , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Via de Pentose Fosfato , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico , Aminoácidos/deficiência , Aminoácidos/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/deficiência , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Biomarcadores Tumorais/metabolismo , Morte Celular , Proteínas de Ligação a DNA/metabolismo , Feminino , Frutose-Bifosfatase/metabolismo , Genótipo , Células HCT116 , Hexoquinase/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células MCF-7 , Masculino , Camundongos Knockout , Fenótipo , Fosfofrutoquinase-1/metabolismo , Fosfopiruvato Hidratase/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteínas Supressoras de Tumor/metabolismo
13.
BMC Public Health ; 24(1): 515, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373965

RESUMO

BACKGROUND: Our study aimed to investigate the impact of urinary concentrations of personal care products (PCPs)-related phenols (PNs) and parabens (PBs), including Triclosan (TCS), Bisphenol A (BPA), Benzophenone-3 (BP-3), Butylparaben (BPB), Ethylparaben (EPB), Methylparaben (MPB), and Propylparaben (PPB), on urinary incontinence (UI) occurrence. METHOD: We conducted a cross-sectional analysis using data from the National Health and Nutrition Examination Survey (NHANES) spanning the years 2007 to 2016. Regression analysis was employed to investigate the relationship between exposure to PCPs-related substances, various levels of exposure, and UI within both the general population and the female demographic. Additionally, the Bayesian Kernel Machine Regression (BKMR) model was used to assess the effects of mixtures on UI. RESULTS: Our analysis comprised 7,690 participants who self-reported their diagnosis. Among them, 12.80% experienced stress urinary incontinence (SUI), 11.80% reported urge urinary incontinence (UUI), and 10.22% exhibited mixed urinary incontinence (MUI). In our fully adjusted multivariable models, BP-3 exposure exhibited a positive association with SUI (OR 1.07, 95% CI 1.02-1.14, p = 0.045). BPA exposure correlated with an increased risk of UUI (OR 1.21, 95% CI 1.01-1.44, p = 0.046) and MUI (OR 1.26, 95% CI 1.02-1.54, p = 0.029). TCS exposure displayed a negative correlation with the incidence of MUI (OR 0.87, 95% CI 0.79-0.97, p = 0.009). No significant links were observed between parabens and urinary incontinence. Notably, among the female population, our investigation revealed that BPA exposure heightened the risk of MUI (OR 1.28, 95% CI 1.01-1.63, p = 0.043). Participants in the highest tertile of BP-3 exposure demonstrated elevated likelihoods of SUI and MUI compared to those in the lowest tertile. In the BKMR analysis, negative trends were observed between the mixture and the risks of UUI and MUI when the mixture ranged from the 25th to the 40th and 35th to the 40th percentiles or above, respectively. Additionally, a positive trend was identified between the mixture and MUI when it was in the 40th to 55th percentile. CONCLUSION: In conclusion, our findings suggest that exposure to BPA, TCS, and BP-3 may contribute to the development of urinary incontinence.


Assuntos
Incontinência Urinária por Estresse , Incontinência Urinária , Humanos , Feminino , Inquéritos Nutricionais , Parabenos/efeitos adversos , Parabenos/análise , Estudos Transversais , Teorema de Bayes , Incontinência Urinária/induzido quimicamente , Incontinência Urinária/epidemiologia , Incontinência Urinária por Estresse/epidemiologia , Incontinência Urinária por Estresse/etiologia
14.
Mol Psychiatry ; 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338313

RESUMO

Astrocyte aerobic glycolysis provides vital trophic support for central nervous system neurons. However, whether and how astrocytic metabolic dysregulation contributes to neuronal dysfunction in intellectual disability (ID) remain unclear. Here, we demonstrate a causal role for an ID-associated SNX27 mutation (R198W) in cognitive deficits involving reshaping astrocytic metabolism. We generated SNX27R196W (equivalent to human R198W) knock-in mice and found that they displayed deficits in synaptic function and learning behaviors. SNX27R196W resulted in attenuated astrocytic glucose uptake via GLUT1, leading to reduced lactate production and a switch from homeostatic to reactive astrocytes. Importantly, lactate supplementation or a ketogenic diet restored neuronal oxidative phosphorylation and reversed cognitive deficits in SNX27R196W mice. In summary, we illustrate a key role for astrocytic SNX27 in maintaining glucose supply and glycolysis and reveal that altered astrocytic metabolism disrupts the astrocyte-neuron interaction, which contributes to ID. Our work also suggests a feasible strategy for treating ID by restoring astrocytic metabolic function.

15.
Nature ; 548(7665): 112-116, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28723898

RESUMO

The major energy source for most cells is glucose, from which ATP is generated via glycolysis and/or oxidative metabolism. Glucose deprivation activates AMP-activated protein kinase (AMPK), but it is unclear whether this activation occurs solely via changes in AMP or ADP, the classical activators of AMPK. Here, we describe an AMP/ADP-independent mechanism that triggers AMPK activation by sensing the absence of fructose-1,6-bisphosphate (FBP), with AMPK being progressively activated as extracellular glucose and intracellular FBP decrease. When unoccupied by FBP, aldolases promote the formation of a lysosomal complex containing at least v-ATPase, ragulator, axin, liver kinase B1 (LKB1) and AMPK, which has previously been shown to be required for AMPK activation. Knockdown of aldolases activates AMPK even in cells with abundant glucose, whereas the catalysis-defective D34S aldolase mutant, which still binds FBP, blocks AMPK activation. Cell-free reconstitution assays show that addition of FBP disrupts the association of axin and LKB1 with v-ATPase and ragulator. Importantly, in some cell types AMP/ATP and ADP/ATP ratios remain unchanged during acute glucose starvation, and intact AMP-binding sites on AMPK are not required for AMPK activation. These results establish that aldolase, as well as being a glycolytic enzyme, is a sensor of glucose availability that regulates AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Frutosedifosfatos/metabolismo , Glucose/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteína Axina/metabolismo , Sítios de Ligação , Ativação Enzimática , Fibroblastos , Frutose-Bifosfato Aldolase/genética , Glucose/deficiência , Humanos , Masculino , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
16.
Cell Commun Signal ; 19(1): 122, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930323

RESUMO

BACKGROUND: The aim of this study was to investigate the co-operative role of CXCR4/CXCL12 axis and IL-1Ra in metastatic processes mechanism by interactions between colorectal cancer cells and stromal cells in their microenvironment. METHODS: Expression of IL-1α, interleukin-1 receptor type I (IL-1 RI), CXCL12 and CXCR4 mRNA and proteins were determined by RT-PCR and Western blot. The effect of secreted level of CXCL12 by IL-1Ra on fibroblasts was measured by ELISA. CXCL12 regulate metastatic potential of colorectal cancer was evaluated by proliferation, invasion and angiogenesis assays, respectively, in which invasion and angiogenesis assays used an in vitro system consisting of co-cultured colorectal cells and stromal cells. RESULTS: IL-1α was expressed in high liver metastatic colorectal cancer cell lines (HT-29 and WiDr). The colorectal cancer cell-derived IL-1α and rIL-1α significantly promoted CXCL12 expression by fibroblasts, and this enhancing effect can be significantly inhibited by IL-1Ra (P < 0.01). CXCL12 not only enhanced the migration and proliferation of human umbilical vein endothelial cells, but also significantly enhanced angiogenesis (P < 0.01). Furthermore, the high liver-metastatic colorectal cancer cell line (HT-29), which secretes IL-1α, significantly enhanced angiogenesis compared to the low liver-metastatic cell line (CaCo-2), which does not produce IL-1α (P < 0.01). On the contrary, IL-1Ra can significantly inhibit migration, proliferation and angiogenesis (P < 0.01). CONCLUSION: Autocrine IL-1α and paracrine CXCL12 co-enhances the metastatic potential of colorectal cancer cells; IL-1Ra can inhibit the metastatic potential of colorectal cancer cells via decrease IL-1α/CXCR4/CXCL12 signaling pathways. Video Abstract.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1
17.
Opt Express ; 27(1): 121-131, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30645353

RESUMO

We propose a method for generation of tunable three-dimensional (3D) helical lattices with varying helix pitch. In order to change only the lattice helix pitch, a periodically varying phase along the propagation direction is added to the central beam - one of the interference beams for lattice construction. The phase periodicity determines the helix pitch, which can be reconfigured at ease. Furthermore, a helical lattice structure with an interface (domain wall) is also achieved by changing the phase structure of the lateral beams, leading to opposite rotating direction (helicity) on different sides of the interface. When a Gaussian beam is used to probe the bulk lattice, it can evolve into a spiral beam with its helicity varying in accordance with that of the lattice. Probing along the interface with two dipole-like optical beams leads to unusual propagation dynamics, depending on the phase and size of the two beams. This approach could be further explored for studies of nonlinear interface solitons and topological interface states. In addition, the helical lattices may find applications in dynamical multi-beam optical tweezers.

18.
Biochemistry ; 56(46): 6165-6175, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29077400

RESUMO

The mitogen-activated protein kinases (MAPKs) are key components of cellular signal transduction pathways, which are down-regulated by the MAPK phosphatases (MKPs). Catalytic activity of the MKPs is controlled both by their ability to recognize selective MAPKs and by allosteric activation upon binding to MAPK substrates. Here, we use a combination of experimental and computational techniques to elucidate the molecular mechanism for the ERK2-induced MKP3 activation. Mutational and kinetic study shows that the 334FNFM337 motif in the MKP3 catalytic domain is essential for MKP3-mediated ERK2 inactivation and is responsible for ERK2-mediated MKP3 activation. The long-term molecular dynamics (MD) simulations further reveal a complete dynamic process in which the catalytic domain of MKP3 gradually changes to a conformation that resembles an active MKP catalytic domain over the time scale of the simulation, providing a direct time-dependent observation of allosteric signal transmission in ERK2-induced MKP3 activation.


Assuntos
Fosfatase 6 de Especificidade Dupla/metabolismo , Ativação Enzimática , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Transdução de Sinais , Regulação Alostérica , Animais , Domínio Catalítico , Fosfatase 6 de Especificidade Dupla/química , Humanos , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/química , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Ratos
19.
Opt Lett ; 42(3): 627-630, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28146544

RESUMO

We report on the soliton-mediated orientational ordering of gold nanorods in a colloidal plasmonic suspension. Due to the nonlinear optical response of the suspension, a light beam forms an optical spatial soliton which creates an effective optical waveguide. The orientation of the nanorods along the waveguide is regulated by the optical torque exerted by the linearly polarized soliton beam. By measuring the polarization transmission spectrum of a probe beam at a wavelength far from the plasmonic resonance, we observe orientation-enhanced birefringence along the soliton channel, suggesting a disorder-to-order transition of nanorods due to the action of the soliton beam. This approach may be applied in other colloidal systems with optical force-induced nonlinearity.

20.
Eur J Cancer Prev ; 33(3): 200-207, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823407

RESUMO

To compare the effects of Ivor-Lewis esophagectomy and McKeown esophagectomy on perioperative anxiety and depression in patients with esophageal cancer. Sixty-three patients with stage I-III middle and lower esophageal carcinoma from June 2021 to December 2022 were randomly divided into observation group (n = 32) treated with laparoscopic Ivor-Lewis esophagectomy and control group (n = 31) treated with laparoscopic McKeown esophagectomy. Self-Rating Depression Scale (SDS) and Self-Rating Anxiety Scale (SAS) were measured on the second day of admission and the fifth day after surgery to assess the presence of depression and anxiety. The preoperative and postoperative clinical data of both groups were compared, and multivariate analysis was used to identify risk factors associated with depression and anxiety in patients with esophageal cancer. There was no significant difference in SDS and SAS standard scores between the observation group and the control group ( P  > 0.05). The postoperative SDS and SAS scores in the control group were significantly higher than those before and after operation in the observation group ( P  < 0.01). According to univariate analysis, patients with TNM stage III, tumor diameter greater than 3 cm, postoperative complications, radical McKeown esophagectomy, and C-reactive protein levels above 10 mg/L had a higher incidence of depression and anxiety ( P  < 0.05). Multivariate logistic analysis showed that TNM stage III (depression: OR 1.683, 95 CI 1.429-1.861; Anxiety: OR 1.739, 95 CI 1.516-1.902), postoperative complications (depression: OR 2.345, 95 CI 1.435-3.891; Anxiety: OR 1.872, 95 CI 1.372-3.471), surgical approach (depression: OR 1.609, 95 CI 1.502-3.193; Anxiety: OR 1.658, 95 CI 1.469-2.059), and C-reactive protein (depression: OR 2.260, 95 CI 1.157-4.059; Anxiety: OR 0.373, 95 CI 0.253-0.976) were all independent factors for depression and anxiety in patients after esophageal cancer surgery ( P  < 0.05). The Ivor-Lewis esophagectomy has the advantages of fewer complications and low inflammatory response, which can help alleviate anxiety and depression and improve patients' quality of life and prognosis.


Assuntos
Neoplasias Esofágicas , Esofagectomia , Humanos , Esofagectomia/efeitos adversos , Qualidade de Vida , Proteína C-Reativa , Depressão , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/cirurgia , Resultado do Tratamento , Ansiedade , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA