Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 21(4): 792-805, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36582069

RESUMO

Jasmonic acid (JA) plays an important role in regulating plant growth and defence responses. Here, we show that a transcription factor that belongs to the B-box (BBX) family named SlBBX20 regulates resistance to Botrytis cinerea in tomato by modulating JA signalling. The response to JA was significantly suppressed when SlBBX20 was overexpressed in tomato. By contrast, the JA response was enhanced in SlBBX20 knockout lines. RNA sequencing analysis provided more evidence that SlBBX20 modulates the expression of genes that are involved in JA signalling. We found that SlBBX20 interacts with SlMED25, a subunit of the Mediator transcriptional co-activator complex, and prevents the accumulation of the SlMED25 protein and transcription of JA-responsive genes. JA contributes to the defence response against necrotrophic pathogens. Knocking out SlBBX20 or overexpressing SlMED25 enhanced tomato resistance to B. cinerea. The resistance was impaired when SlBBX20 was overexpressed in plants that also overexpressed SlMED25. These data show that SlBBX20 attenuates JA signalling by regulating SlMED25. Interestingly, in addition to developing enhanced resistance to B. cinerea, SlBBX20-KO plants also produced higher fruit yields. SlBBX20 is a potential target gene for efforts that aim to develop elite crop varieties using gene editing technologies.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Oxilipinas/metabolismo , Transdução de Sinais/genética , Botrytis , Ciclopentanos/metabolismo , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Resistência à Doença/genética
2.
New Phytol ; 240(3): 1275-1291, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37615215

RESUMO

The complexity of compound leaves results primarily from the leaflet initiation and arrangement during leaf development. However, the molecular mechanism underlying compound leaf development remains a central research question. SlTCP24 and SlTCP29, two plant-specific transcription factors with the conserved TCP motif, are shown here to synergistically regulate compound leaf development in tomato. When both of them were knocked out simultaneously, the number of leaflets significantly increased, and the shape of the leaves became more complex. SlTCP24 and SlTCP29 could form both homodimers and heterodimers, and such dimerization was impeded by the leaf polarity regulator SlAS2, which interacted with SlTCP24 and SlTCP29. SlTCP24 and SlTCP29 could bind to the TCP-binding cis-element of the SlCKX2 promoter and activate its transcription. Transgenic plants with SlTCP24 and SlTCP29 double-gene knockout had a lowered transcript level of SlCKX2 and an elevated level of cytokinin. This work led to the identification of two key regulators of tomato compound leaf development and their targeted genes involved in cytokinin metabolic pathway. A model of regulation of compound leaf development was proposed based on observations of this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA