Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 164(3): 550-63, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26824661

RESUMO

Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/patologia , Transcriptoma , Adulto , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Análise por Conglomerados , DNA Helicases/genética , Metilação de DNA , Epigênese Genética , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Pessoa de Meia-Idade , Mutação , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Transdução de Sinais , Telomerase/genética , Telômero , Proteína Nuclear Ligada ao X
2.
Cell ; 163(2): 506-19, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26451490

RESUMO

Invasive lobular carcinoma (ILC) is the second most prevalent histologic subtype of invasive breast cancer. Here, we comprehensively profiled 817 breast tumors, including 127 ILC, 490 ductal (IDC), and 88 mixed IDC/ILC. Besides E-cadherin loss, the best known ILC genetic hallmark, we identified mutations targeting PTEN, TBX3, and FOXA1 as ILC enriched features. PTEN loss associated with increased AKT phosphorylation, which was highest in ILC among all breast cancer subtypes. Spatially clustered FOXA1 mutations correlated with increased FOXA1 expression and activity. Conversely, GATA3 mutations and high expression characterized luminal A IDC, suggesting differential modulation of ER activity in ILC and IDC. Proliferation and immune-related signatures determined three ILC transcriptional subtypes associated with survival differences. Mixed IDC/ILC cases were molecularly classified as ILC-like and IDC-like revealing no true hybrid features. This multidimensional molecular atlas sheds new light on the genetic bases of ILC and provides potential clinical options.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Lobular/genética , Carcinoma Lobular/patologia , Antígenos CD , Neoplasias da Mama/metabolismo , Caderinas/química , Caderinas/genética , Caderinas/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/metabolismo , Feminino , Fator 3-alfa Nuclear de Hepatócito/química , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Modelos Moleculares , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Oncogênica v-akt/metabolismo , Transcriptoma
3.
Cell ; 148(4): 651-63, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22341440

RESUMO

To assess telomerase as a cancer therapeutic target and determine adaptive mechanisms to telomerase inhibition, we modeled telomerase reactivation and subsequent extinction in T cell lymphomas arising in Atm(-/-) mice engineered with an inducible telomerase reverse transcriptase allele. Telomerase reactivation in the setting of telomere dysfunction enabled full malignant progression with alleviation of telomere dysfunction-induced checkpoints. These cancers possessed copy number alterations targeting key loci in human T cell lymphomagenesis. Upon telomerase extinction, tumor growth eventually slowed with reinstatement of telomere dysfunction-induced checkpoints, yet growth subsequently resumed as tumors acquired alternative lengthening of telomeres (ALT) and aberrant transcriptional networks centering on mitochondrial biology and oxidative defense. ALT+ tumors acquired amplification/overexpression of PGC-1ß, a master regulator of mitochondrial biogenesis and function, and they showed marked sensitivity to PGC-1ß or SOD2 knockdown. Genetic modeling of telomerase extinction reveals vulnerabilities that motivate coincidental inhibition of mitochondrial maintenance and oxidative defense mechanisms to enhance antitelomerase cancer therapy.


Assuntos
Mitocôndrias , Telomerase/antagonistas & inibidores , Homeostase do Telômero , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Genes cdc , Humanos , Linfoma de Células T/genética , Linfoma de Células T/metabolismo , Linfoma de Células T/patologia , Camundongos , Mitocôndrias/metabolismo , Invasividade Neoplásica/patologia , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Telomerase/genética , Telomerase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética
4.
Cell ; 148(5): 896-907, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22341455

RESUMO

To determine the role of telomere dysfunction and telomerase reactivation in generating pro-oncogenic genomic events and in carcinoma progression, an inducible telomerase reverse transcriptase (mTert) allele was crossed onto a prostate cancer-prone mouse model null for Pten and p53 tumor suppressors. Constitutive telomerase deficiency and associated telomere dysfunction constrained cancer progression. In contrast, telomerase reactivation in the setting of telomere dysfunction alleviated intratumoral DNA-damage signaling and generated aggressive cancers with rearranged genomes and new tumor biological properties (bone metastases). Comparative oncogenomic analysis revealed numerous recurrent amplifications and deletions of relevance to human prostate cancer. Murine tumors show enrichment of the TGF-ß/SMAD4 network, and genetic validation studies confirmed the cooperative roles of Pten, p53, and Smad4 deficiencies in prostate cancer progression, including skeletal metastases. Thus, telomerase reactivation in tumor cells experiencing telomere dysfunction enables full malignant progression and provides a mechanism for acquisition of cancer-relevant genomic events endowing new tumor biological capabilities.


Assuntos
Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Telomerase/metabolismo , Telômero/metabolismo , Animais , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Cruzamentos Genéticos , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Feminino , Instabilidade Genômica , Humanos , Masculino , Camundongos , Proteína Supressora de Tumor p53/metabolismo
5.
Cell ; 149(3): 656-70, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22541435

RESUMO

Tumor maintenance relies on continued activity of driver oncogenes, although their rate-limiting role is highly context dependent. Oncogenic Kras mutation is the signature event in pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible Kras(G12D)-driven PDAC mouse model establishes that advanced PDAC remains strictly dependent on Kras(G12D) expression. Transcriptome and metabolomic analyses indicate that Kras(G12D) serves a vital role in controlling tumor metabolism through stimulation of glucose uptake and channeling of glucose intermediates into the hexosamine biosynthesis and pentose phosphate pathways (PPP). These studies also reveal that oncogenic Kras promotes ribose biogenesis. Unlike canonical models, we demonstrate that Kras(G12D) drives glycolysis intermediates into the nonoxidative PPP, thereby decoupling ribose biogenesis from NADP/NADPH-mediated redox control. Together, this work provides in vivo mechanistic insights into how oncogenic Kras promotes metabolic reprogramming in native tumors and illuminates potential metabolic targets that can be exploited for therapeutic benefit in PDAC.


Assuntos
Adenocarcinoma/metabolismo , Modelos Animais de Doenças , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Humanos , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Transcrição Gênica
7.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782135

RESUMO

Recent findings regarding nicotinamide adenine dinucleotide (NAD+)-capped RNAs (NAD-RNAs) indicate that prokaryotes and eukaryotes employ noncanonical RNA capping to regulate gene expression. Two methods for transcriptome-wide analysis of NAD-RNAs, NAD captureSeq and NAD tagSeq, are based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry to label NAD-RNAs. However, copper ions can fragment/degrade RNA, interfering with the analyses. Here we report development of NAD tagSeq II, which uses copper-free, strain-promoted azide-alkyne cycloaddition (SPAAC) for labeling NAD-RNAs, followed by identification of tagged RNA by single-molecule direct RNA sequencing. We used this method to compare NAD-RNA and total transcript profiles of Escherichia coli cells in the exponential and stationary phases. We identified hundreds of NAD-RNA species in E. coli and revealed genome-wide alterations of NAD-RNA profiles in the different growth phases. Although no or few NAD-RNAs were detected from some of the most highly expressed genes, the transcripts of some genes were found to be primarily NAD-RNAs. Our study suggests that NAD-RNAs play roles in linking nutrient cues with gene regulation in E. coli.


Assuntos
Química Click/métodos , Reação de Cicloadição/métodos , NAD/metabolismo , Processamento Pós-Transcricional do RNA , Transcriptoma , Ciclo Celular , Escherichia coli , NAD/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753511

RESUMO

Nicotinamide adenine diphosphate (NAD+) is a novel messenger RNA 5' cap in Escherichia coli, yeast, mammals, and Arabidopsis Transcriptome-wide identification of NAD+-capped RNAs (NAD-RNAs) was accomplished through NAD captureSeq, which combines chemoenzymatic RNA enrichment with high-throughput sequencing. NAD-RNAs are enzymatically converted to alkyne-RNAs that are then biotinylated using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Originally applied to E. coli RNA, which lacks the m7G cap, NAD captureSeq was then applied to eukaryotes without extensive verification of its specificity for NAD-RNAs vs. m7G-capped RNAs (m7G-RNAs). In addition, the Cu2+ ion in the CuAAC reaction causes RNA fragmentation, leading to greatly reduced yield and loss of full-length sequence information. We developed an NAD-RNA capture scheme utilizing the copper-free, strain-promoted azide-alkyne cycloaddition reaction (SPAAC). We examined the specificity of CuAAC and SPAAC reactions toward NAD-RNAs and m7G-RNAs and found that both prefer the former, but also act on the latter. We demonstrated that SPAAC-NAD sequencing (SPAAC-NAD-seq), when combined with immunodepletion of m7G-RNAs, enables NAD-RNA identification with accuracy and sensitivity, leading to the discovery of new NAD-RNA profiles in Arabidopsis Furthermore, SPAAC-NAD-seq retained full-length sequence information. Therefore, SPAAC-NAD-seq would enable specific and efficient discovery of NAD-RNAs in prokaryotes and, when combined with m7G-RNA depletion, in eukaryotes.


Assuntos
Arabidopsis/genética , Perfilação da Expressão Gênica/métodos , NAD , Capuzes de RNA/química , Capuzes de RNA/genética , RNA-Seq/métodos , Reação de Cicloadição , Transcrição Gênica
9.
Anal Chem ; 95(29): 11124-11131, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37439785

RESUMO

Recent discoveries of noncanonical RNA caps, such as nicotinamide adenine dinucleotide (NAD+) and 3'-dephospho-coenzyme A (dpCoA), have expanded our knowledge of RNA caps. Although dpCoA has been known to cap RNAs in various species, the identities of its capped RNAs (dpCoA-RNAs) remained unknown. To fill this gap, we developed a method called dpCoA tagSeq, which utilized a thiol-reactive maleimide group to label dpCoA cap with a tag RNA serving as the 5' barcode. The barcoded RNAs were isolated using a complementary DNA strand of the tag RNA prior to direct sequencing by nanopore technology. Our validation experiments with model RNAs showed that dpCoA-RNA was efficiently tagged and captured using this protocol. To confirm that the tagged RNAs are capped by dpCoA and no other thiol-containing molecules, we used a pyrophosphatase NudC to degrade the dpCoA cap to adenosine monophosphate (AMP) moiety before performing the tagSeq protocol. We identified 44 genes that transcribe dpCoA-RNAs in mouse liver, demonstrating the method's effectiveness in identifying and characterizing the capped RNAs. This strategy provides a viable approach to identifying dpCoA-RNAs that allows for further functional investigations of the cap.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Animais , Camundongos , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Coenzima A , Maleimidas
10.
J Appl Clin Med Phys ; 24(10): e14066, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37307238

RESUMO

PURPOSE: Magnetic resonance-guided radiotherapy (MRgRT) is desired for the treatment of diseases in the abdominothoracic region, which has a broad imaging area and continuous motion. To ensure accurate treatment delivery, an effective image quality assurance (QA) program, with a phantom that covers the field of view (FOV) similar to a human torso, is required. However, routine image QA for a large FOV is not readily available at many MRgRT centers. In this work, we present the clinical experience of the large FOV MRgRT Insight phantom for periodic daily and monthly comprehensive magnetic resonance imaging (MRI)-QA and its feasibility compared to the existing institutional routine MRI-QA procedures in 0.35 T MRgRT. METHODS: Three phantoms; ViewRay cylindrical water phantom, Fluke 76-907 uniformity and linearity phantom, and Modus QA large FOV MRgRT Insight phantom, were imaged on the 0.35 T MR-Linac. The measurements were made in MRI mode with the true fast imaging with steady-state free precession (TRUFI) sequence. The ViewRay cylindrical water phantom was imaged in a single-position setup whereas the Fluke phantom and Insight phantom were imaged in three different orientations: axial, sagittal, and coronal. Additionally, the phased array coil QA was performed using the horizontal base plate of the Insight phantom by placing the desired coil around the base section which was compared to an in-house built Polyurethane foam phantom for reference. RESULT: The Insight phantom captured image artifacts across the entire planar field of view, up to 400 mm, in a single image acquisition, which is beyond the FOV of the conventional phantoms. The geometric distortion test showed a similar distortion of 0.45 ± 0.01  and 0.41 ± 0.01 mm near the isocenter, that is, within 300 mm lengths for Fluke and Insight phantoms, respectively, but showed higher geometric distortion of 0.8 ± 0.4 mm in the peripheral region between 300 and 400 mm of the imaging slice for the Insight phantom. The Insight phantom with multiple image quality features and its accompanying software utilized the modulation transform function (MTF) to evaluate the image spatial resolution. The average MTF values were 0.35 ± 0.01, 0.35 ± 0.01, and 0.34 ± 0.03 for axial, coronal, and sagittal images, respectively. The plane alignment and spatial accuracy of the ViewRay water phantom were measured manually. The phased array coil test for both the Insight phantom and the Polyurethane foam phantoms ensured the proper functionality of each coil element. CONCLUSION: The multifunctional large FOV Insight phantom helps in tracking MR imaging quality of the system to a larger extent compared to the routine daily and monthly QA phantoms currently used in our institute. Also, the Insight phantom is found to be more feasible for routine QA with easy setup.


Assuntos
Imageamento por Ressonância Magnética , Software , Humanos , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Água
11.
Genes Dev ; 29(7): 732-45, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25838542

RESUMO

Glioblastoma multiforme (GBM) is a lethal, therapy-resistant brain cancer consisting of numerous tumor cell subpopulations, including stem-like glioma-initiating cells (GICs), which contribute to tumor recurrence following initial response to therapy. Here, we identified miR-182 as a regulator of apoptosis, growth, and differentiation programs whose expression level is correlated with GBM patient survival. Repression of Bcl2-like12 (Bcl2L12), c-Met, and hypoxia-inducible factor 2α (HIF2A) is of central importance to miR-182 anti-tumor activity, as it results in enhanced therapy susceptibility, decreased GIC sphere size, expansion, and stemness in vitro. To evaluate the tumor-suppressive function of miR-182 in vivo, we synthesized miR-182-based spherical nucleic acids (182-SNAs); i.e., gold nanoparticles covalently functionalized with mature miR-182 duplexes. Intravenously administered 182-SNAs penetrated the blood-brain/blood-tumor barriers (BBB/BTB) in orthotopic GBM xenografts and selectively disseminated throughout extravascular glioma parenchyma, causing reduced tumor burden and increased animal survival. Our results indicate that harnessing the anti-tumor activities of miR-182 via safe and robust delivery of 182-SNAs represents a novel strategy for therapeutic intervention in GBM.


Assuntos
Apoptose/genética , Diferenciação Celular/genética , Glioblastoma/genética , MicroRNAs/metabolismo , Animais , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/fisiopatologia , Humanos , Camundongos , Camundongos SCID , MicroRNAs/administração & dosagem , MicroRNAs/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Análise de Sobrevida
12.
J Integr Plant Biol ; 65(3): 825-837, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36250681

RESUMO

Pattern-triggered immunity (PTI) is an essential strategy used by plants to deploy broad-spectrum resistance against pathogen attacks. Heterotrimeric G proteins have been reported to contribute to PTI. Of the three non-canonical EXTRA-LARGE G PROTEINs (XLGs) in Arabidopsis thaliana, XLG2 and XLG3 were shown to positively regulate immunity, but XLG1 was not considered to function in defense, based on the analysis of a weak xlg1 allele. In this study, we characterized the xlg1 xlg2 xlg3 triple knockout mutants generated from an xlg1 knockout allele. The strong xlg1 xlg2 xlg3 triple mutants compromised pathogen-associated molecular pattern (PAMP)-triggered activation of mitogen-activated protein kinases (MAPKs) and resistance to pathogen infection. The three XLGs interacted with MAPK cascade proteins involved in defense signaling, including the MAPK kinase kinases MAPKKK3 and MAPKKK5, the MAPK kinases MKK4 and MKK5, and the MAPKs MPK3 and MPK6. Expressing a constitutively active form of MKK4 restored MAPK activation and partially recovered the compromised disease resistance seen in the strong xlg1 xlg2 xlg3 triple mutant. Furthermore, mutations of all three XLGs largely restored the phenotype of the autoimmunity mutant bak1-interacting receptor-like kinase 1. Our study reveals that all three XLGs function redundantly in PAMP-triggered MAPK activation and plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Heterotriméricas de Ligação ao GTP , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Imunidade Vegetal , Regulação da Expressão Gênica de Plantas
13.
Proc Natl Acad Sci U S A ; 116(24): 12072-12077, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31142650

RESUMO

The 5' end of a eukaryotic mRNA transcript generally has a 7-methylguanosine (m7G) cap that protects mRNA from degradation and mediates almost all other aspects of gene expression. Some RNAs in Escherichia coli, yeast, and mammals were recently found to contain an NAD+ cap. Here, we report the development of the method NAD tagSeq for transcriptome-wide identification and quantification of NAD+-capped RNAs (NAD-RNAs). The method uses an enzymatic reaction and then a click chemistry reaction to label NAD-RNAs with a synthetic RNA tag. The tagged RNA molecules can be enriched and directly sequenced using the Oxford Nanopore sequencing technology. NAD tagSeq can allow more accurate identification and quantification of NAD-RNAs, as well as reveal the sequences of whole NAD-RNA transcripts using single-molecule RNA sequencing. Using NAD tagSeq, we found that NAD-RNAs in Arabidopsis were produced by at least several thousand genes, most of which are protein-coding genes, with the majority of these transcripts coming from <200 genes. For some Arabidopsis genes, over 5% of their transcripts were NAD capped. Gene ontology terms overrepresented in the 2,000 genes that produced the highest numbers of NAD-RNAs are related to photosynthesis, protein synthesis, and responses to cytokinin and stresses. The NAD-RNAs in Arabidopsis generally have the same overall sequence structures as the canonical m7G-capped mRNAs, although most of them appear to have a shorter 5' untranslated region (5' UTR). The identification and quantification of NAD-RNAs and revelation of their sequence features can provide essential steps toward understanding the functions of NAD-RNAs.


Assuntos
Arabidopsis/genética , NAD/genética , Capuzes de RNA/genética , RNA Mensageiro/genética , Regiões 5' não Traduzidas/genética , Expressão Gênica/genética , Análise de Sequência de RNA
14.
Plant J ; 100(4): 768-783, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31348568

RESUMO

Perturbation of the cellular redox state by stress conditions is sensed by redox-sensitive proteins so that the cell can physiologically respond to stressors. However, the mechanisms linking sensing to response remain poorly understood in plants. Here we report that the transcription factor bZIP68 underwent in vivo oxidation in Arabidopsis cells under oxidative stress which is dependent on its redox-sensitive Cys320 residue. bZIP68 is primarily localized to the nucleus under normal growth conditions in Arabidopsis seedlings. Oxidative stress reduces its accumulation in the nucleus and increases its cytosolic localization. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) revealed that bZIP68 primarily binds to promoter regions containing the core G-box (CACGTG) or G-box-like motif of the genes involved in abiotic and biotic stress responses, photosynthesis, biosynthetic processes, and transcriptional regulation. The bzip68 mutant displayed slower growth under normal conditions but enhanced tolerance to oxidative stress. The results from the ChIP-seq and phenotypic and transcriptome comparison between the bzip68 mutant and wildtype indicate that bZIP68 normally suppresses expression of stress tolerance genes and promotes expression of growth-related genes, whereas its inactivation enhances stress tolerance but suppresses growth. bZIP68 might balance stress tolerance with growth through the extent of its oxidative inactivation according to the environment.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Estresse Oxidativo/fisiologia , Transativadores/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Sítios de Ligação , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Cisteína/química , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/farmacologia , Mutação , Oxirredução , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Transativadores/genética , Fatores de Transcrição
15.
Anal Chem ; 92(6): 4484-4490, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32093472

RESUMO

Post-translational modification of proteins can form electrophilic cofactors that serve as a catalytic center. The derived electrophilic cofactors greatly expand protein activities and functions. However, there are few studies concerning how to profile the electrophiles in bacteria. Herein, we utilized a clickable probe called propargyl hydrazine to profile the protein-derived electrophilic cofactors in Escherichia coli (E. coli) cells. Since the cofactors are mostly carbonyl groups, the hydrazine-based probe can specifically react with the cofactors to form a Schiff base. The labeled proteins were then pulled down for mass spectrometry (MS) analysis. Fourteen proteins were shown to undergo enrichment by the probe and competitive binding by its analogue, propyl hydrazine. The identified proteins were further analyzed with targeted proteomics based on parallel reaction monitoring (PRM). Using this strategy, we obtained a global portrait of protein electrophiles in bacterial cells, among which the proteins of speD and panD were previously reported to derive pyruvoyl group as an electrophilic center while lpp can retain N-terminal formyl methionine. This quantitative chemical proteomics strategy can be used to find out protein electrophiles in bacteria and holds great potential to further characterize the protein functions.


Assuntos
Proteínas de Escherichia coli/análise , Escherichia coli/química , Hidrazinas/química , Sondas Moleculares/química , Proteômica , Escherichia coli/citologia , Espectrometria de Massas , Estrutura Molecular , Bases de Schiff/análise
16.
Genes Dev ; 26(13): 1459-72, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22751500

RESUMO

Multidimensional cancer genome analysis and validation has defined Quaking (QKI), a member of the signal transduction and activation of RNA (STAR) family of RNA-binding proteins, as a novel glioblastoma multiforme (GBM) tumor suppressor. Here, we establish that p53 directly regulates QKI gene expression, and QKI protein associates with and leads to the stabilization of miR-20a; miR-20a, in turn, regulates TGFßR2 and the TGFß signaling network. This pathway circuitry is substantiated by in silico epistasis analysis of its components in the human GBM TCGA (The Cancer Genome Atlas Project) collection and by their gain- and loss-of-function interactions in in vitro and in vivo complementation studies. This p53-QKI-miR-20a-TGFß pathway expands our understanding of the p53 tumor suppression network in cancer and reveals a novel tumor suppression mechanism involving regulation of specific cancer-relevant microRNAs.


Assuntos
Linhagem Celular , Glioblastoma/metabolismo , MicroRNAs/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Animais , Glioblastoma/genética , Humanos , Camundongos , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Pak J Pharm Sci ; 32(4): 1723-1747, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31608897

RESUMO

Curcumin, a natural polyphenolic compound derived from turmeric (Curcuma longa L), has proven to exhibit biological activity towards different kinds of diseases. But the low oral bioavailability results in a limited application in clinic treatment. Recently, numerous curcumin derivatives were synthesized by the modification of three important functional groups: The aromatic o-methoxy phenolic group, a seven conjugated carbon linker and the ß-diket one moiety. However, many people know curcumin only as an anticancer agent and overlook the diverse biological activities of curcumin and curcumin-based derivatives. In this article, we summarized the novel synthetic curcuminoids by different therapeutic activities including antioxidant activity, anti-HIV activity, stimulating activity of gastric emptying, anti-inflammatory activity, ACE inhibition activity, prevention of Parkinson's disease, anti-parasitism, anti-obesity, prevention of Alzheimer's disease, and antibacterial activity. The relation between structural features and activities were also investigated.


Assuntos
Fármacos Anti-HIV/farmacologia , Antioxidantes/farmacologia , Antiparkinsonianos/farmacologia , Diarileptanoides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Fármacos Anti-HIV/química , Fármacos Antiobesidade/química , Fármacos Antiobesidade/farmacologia , Antioxidantes/química , Antiparkinsonianos/química , Antiprotozoários/química , Antiprotozoários/farmacologia , Diarileptanoides/síntese química , Diarileptanoides/química , Esvaziamento Gástrico/efeitos dos fármacos , Humanos , Estrutura Molecular
19.
N Engl J Med ; 372(26): 2481-98, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26061751

RESUMO

BACKGROUND: Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. METHODS: We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. RESULTS: Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. CONCLUSIONS: The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.).


Assuntos
DNA de Neoplasias/análise , Genes p53 , Glioma/genética , Mutação , Adolescente , Adulto , Idoso , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 19 , Análise por Conglomerados , Feminino , Glioblastoma/genética , Glioma/metabolismo , Glioma/mortalidade , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Modelos de Riscos Proporcionais , Análise de Sequência de DNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA