Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Res ; 241: 117597, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939808

RESUMO

Since the 2007 water crisis occurred in Lake Taihu, substantial measures have been taken to restore the lake. This study evaluates the effectiveness of these restoration activities. We examined the physicochemical parameters and the distribution of microcystin and Microcystis in both the water column and sediment during the bloom period of May 2020 to October 2020. The mean value of extracellular and intracellular microcystin content was 0.12 µg L-1 and 16.26 µg L-1, respectively. The mean value of microcystin in sediment was 172.02 ng g-1 and peaked in August. The concentration in the water and sediment was significantly lower than the historical average concentration. The abundance of toxigenic Microcystis and total Microcystis in the water column ranged from 2.61 × 102 to 2.25 × 109 copies·L-1 and 8.28 × 105 to 2.76 × 109 copies·L-1, respectively. The proportion of toxic Microcystis in the sediment ranging from 31.2% to 19.12%. The highest and lowest region was Meiliang Bay and Grass-algae type zone, respectively. The copy number of the 16S rRNA gene was 1-4 orders of magnitude higher than that of mcyA gene in populations of Microcystis, indicating that non-toxic Microcystis was the dominant form in the majority of the lake. The abundance of toxic Microcystis in the water column was positively correlated with total phosphorus, PO43--P and pH, while the water temperature played distinct role to the distribution of toxic Microcystis in sediment. Our research indicated phosphorus remains a key factor influencing the toxic Microcystis and microcystins in the water column. pH played distinct roles in the distribution of microcystins in sediment and water column. The increasing water temperature is a threat. Explicit management actions and policies, which take into account nutrient concentrations, pH, and increasing temperatures, are necessary to understand and control the distribution of microcystin and Microcystis in Lake Taihu.


Assuntos
Água Potável , Microcystis , Lagos/química , Microcistinas , RNA Ribossômico 16S/genética , Microcystis/genética , Fósforo/análise , China
2.
Ecotoxicol Environ Saf ; 279: 116480, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772146

RESUMO

Microcystins (MCs) are toxic to the central nervous system of mammals. However, the direct toxicity of MCs on mammalian brain cells and the involved molecular mechanisms are not fully elucidated. Here, we incubated primary astrocytes, the major glial cell-type in the brain, with 0-12.5 µM concentrations of MC-LR for 48 h, and the impairment was evaluated. We found that MC-LR caused significant increases in the cell viability at the range of 0.05-1 µM concentrations with the highest density at 0.1 µM concentration. Treatment with 0.1 µM MC-LR induced YAP nuclear translocation and decreased the ratio of p-YAP to YAP. It also decreased mRNA levels of the upstream regulator (AMOT), and enhanced expressions of YAP interacted genes (Egfr, Tead1, and Ctgf) in primary astrocytes. Overexpression of AMOT significantly attenuated the increase of MC-LR-induced astrocyte proliferation and the expression of YAP downstream genes. These results indicate that Hippo signaling contributed to MC-LR-caused astrocyte proliferation. Further, reactive astrogliosis was observed in the mice brain after MC-LR exposure to environmentally relevant concentrations (20 or 100 µg/L) through drinking water for 16 weeks. Pathological observations revealed that 100 µg/L MC-LR exposure caused neuronal damages with characteristics of shrunken or vacuolation in the region of the cerebral cortex, striatum and cerebellum. These results were accompanied with increased oxidative stress and inflammatory response. Our data reveal the potential astrocytic mechanisms in MC-induced neurotoxicity and raise an alarm for neurodegenerative disease risk following daily exposure to MC-LR.


Assuntos
Astrócitos , Proliferação de Células , Via de Sinalização Hippo , Toxinas Marinhas , Microcistinas , Transdução de Sinais , Microcistinas/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Via de Sinalização Hippo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Sinalização YAP , Sobrevivência Celular/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Receptores ErbB/metabolismo , Fatores de Transcrição de Domínio TEA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética
3.
J Environ Sci (China) ; 127: 1-14, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522044

RESUMO

Understanding the history of microcystins (MCs) pollution in large lakes can help inform future lake management. We collected sediment cores from Lake Taihu to: investigate the long-term record of MCs (MC-LR, MC-YR, and MC-RR), explore the main environmental drivers of MCs, and assess their public health and ecological risks. Results showed that MCs content in all cores increased over time. The core from north Taihu had the highest MC concentrations, with an average total MCs (sum of MC-LR, MC-YR, and MC-RR = TMCs) content of (74.31±328.55) ng/g. The core from eastern Taihu showed the lowest average TMCs content of (2.91±3.95) ng/g. PCA showed that sediment MCs at the three sites were positively correlated with sediment chlorophyll-a. MC-LR and MC-YR in northern and western Taihu negatively correlated with both the sediment total organic carbon/sediment total nitrogen ratio (STOC/STN) and water nitrate (NO3--N) concentration, but three MC congeners at eastern Taihu showed positive correlations with water orthophosphate (PO43--P), NO3--N, and STOC/STN. Generalized additive model analysis at each site revealed that NO3--N was the main TMCs driver in northern and western Taihu where phytoplankton dominated, whereas PO43--P was the main TMCs driver in eastern Taihu where macrophytes dominated. At the whole lake scale, total phosphorus (TP) and PO43--P were the most important environmental drivers influencing MCs; TP explained 47.4%, 44.2%, and 47.6% while orthophosphate explained 34.8%, 31.2%, and 34.7% of the deviance on TMCs, MC-LR, and MC-YR, respectively. NO3--N also showed a strong effect on MCs variation, especially on MC-YR. Risk assessment showed that both ecological and public health risk has increased in recent years. We conclude that while control of phosphorus and nitrogen input should be a major focus for future lake management, lake zone-specific management strategies may also be important.


Assuntos
Monitoramento Ambiental , Microcistinas , Microcistinas/análise , Fósforo/análise , Nitrogênio/análise , Medição de Risco , Fosfatos/análise , Água/análise , China
4.
Sci China Life Sci ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38926247

RESUMO

Suppressor tRNAs are engineered or naturally occurring transfer RNA molecules that have shown promise in gene therapy for diseases caused by nonsense mutations, which result in premature termination codons (PTCs) in coding sequence, leading to truncated, often nonfunctional proteins. Suppressor tRNAs can recognize and pair with these PTCs, allowing the ribosome to continue translation and produce a full-length protein. This review introduces the mechanism and development of suppressor tRNAs, compares suppressor tRNAs with other readthrough therapies, discusses their potential for clinical therapy, limitations, and obstacles. We also summarize the applications of suppressor tRNAs in both in vitro and in vivo, offering new insights into the research and treatment of nonsense mutation diseases.

5.
Polymers (Basel) ; 12(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143314

RESUMO

The reduced graphene oxide (rGO) modified natural rubber composite (NR) filled with high contents of silica was prepared by a wet compounding and latex mixing process using a novel interface modifier cystamine dihydrochloride (CDHC) with coagulation ability. CDHC acts as a coagulation agent through electrostatic interaction with rGO, SiO2, and latex rubber particles during the latex-based preparation process, while in the obtained silica/graphene/natural rubber composites, CDHC acts as an interface modifier. Compared with the composites prepared by the conventional mechanical mixing method, the dispersion of both rGO and SiO2 in the composites made by a wet compounding and latex mixing process is improved. As a result, the obtained silica/graphene/natural rubber composite prepared by this new method has good comprehensive properties. A Dynamic Mechanical Test suggests that the tan δ values of the composites at 60 °C decrease, indicating a low rolling resistance with increasing the graphene content at a low strain, but it increases at a higher strain. This unique feature for this material provides an advantage in the rubber tire application.

6.
Front Microbiol ; 11: 563367, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072026

RESUMO

Biofilm formation is important for establishing plants-microbe associations. The role of calcium on biofilm formation has been studied in many bacteria except rhizobia. In this study, we investigated the role of calcium for biofilm formation in Azorhizobium caulindans, which forms nodules in the stem and root of its host plant Sesbania rostrata. We found that calcium is essential for A. caulindans biofilm formation, in addition to the presence of extracellular matrix components, eDNA and proteins. Also, calcium-mediated biofilm formation was tested with chemotaxis, motility, cyclic di-GMP synthesis, and quorum sensing mutants. Finally, calcium was found to promote S. rostrata root colonization of A. caulinodans. In total, these results show that calcium is essential for A. caulindans biofilm formation, and it affects the interaction between A. caulinodans and host plant.

7.
Front Microbiol ; 10: 2727, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849879

RESUMO

Chemotaxis toward seed exudates is important in the establishment of microbe-plant associations. The objective of this work was to explore whether organic acids from the seed exudates of Sesbania rostrata play a role in recruiting Azorhizobium caulinodans ORS571 in the plant rhizosphere. High-performance liquid chromatography (HPLC) was used to analyze the organic acid content in seed exudates of S. rostrata and to further determine their roles in A. caulinodans growth and chemotactic response. Succinic, acetic, citric, oxalic, and lactic acids were the most abundant, and, except for oxalic acid, they could support A. caulinodans growth as the sole carbon source. TlpA1, a transmembrane chemoreceptor, was found to be involved in the chemotactic response to these organic acids. Oxalic acid played a direct role in the chemotactic response, but it also played an indirect role by promoting or inhibiting the chemotactic response toward other chemoeffectors. Furthermore, the indirect role of oxalic acid on other chemoeffectors was concentration-dependent. The effect of oxalic acid at different concentrations on host root colonization was also determined. By using different strategies, oxalic acid appears to play a major role in the early steps of the association of A. caulinodans and its host plant.

8.
Oncotarget ; 6(27): 23496-509, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26090721

RESUMO

The transmembrane glycoprotein embigin (EMB) belongs to the immunoglobulin superfamily (IgSF) and a number of IgSF members have been identified as biomarkers for cancer progression. In this study, we show that embigin is transcriptionally regulated by Homeobox C8 (HOXC8) in breast cancer cells and embigin expression suppresses breast tumorigenesis. With aid of Western blot, luciferase reporter gene assay and chromatin immunoprecipitation, we reveal that HOXC8 binds to the EMB promoter at the region of nucleotides -2303 to -2315 and acts as a transcription inhibitor to suppress embigin expression. Depletion of embigin leads to increase in proliferation, anchorage-independent growth and migration of breast cancer cells, and the inhibitory effects mediated by HOXC8 knockdown on breast tumorigenesis can be largely rescued by depletion of embigin expression in breast cancer cells, suggesting that HOXC8 regulates breast tumorigenesis, at least partly, through regulating embigin expression. Moreover, we show that loss of embigin promotes proliferation, anchorage-independent growth, and migration ability of normal mammary epithelial MCF10A cells. The analyses of publically available human breast tumor microarray gene expression database show that low embigin levels correlate with short survival of breast tumor patients, particularly with basal-like tumor patients, and embigin expression is low specifically in patients with basal-like, ER-/HER2- tumors. Taken together, our study demonstrates that low/loss of embigin plays an important role in the progression of breast tumors.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Biomarcadores Tumorais , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Imunoprecipitação da Cromatina , Biologia Computacional , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Lentivirus/genética , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA