Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893338

RESUMO

Acting as a growth regulator, Indole-3-acetic acid (IAA) is an important phytohormone that can be produced by several Bacillus species. However, few studies have been published on the comprehensive evaluation of the strains for practical applications and the effects of selenium species on their IAA-producing ability. The present study showed the selenite reduction strain Bacillus altitudinis LH18, which is capable of producing selenium nanoparticles (SeNPs) at a high yield in a cost-effective manner. Bio-SeNPs were systematically characterized by using DLS, zeta potential, SEM, and FTIR. The results showed that these bio-SeNPs were small in particle size, homogeneously dispersed, and highly stable. Significantly, the IAA-producing ability of strain was differently affected under different selenium species. The addition of SeNPs and sodium selenite resulted in IAA contents of 221.7 µg/mL and 91.01 µg/mL, respectively, which were 3.23 and 1.33 times higher than that of the control. This study is the first to examine the influence of various selenium species on the IAA-producing capacity of Bacillus spp., providing a theoretical foundation for the enhancement of the IAA-production potential of microorganisms.


Assuntos
Bacillus , Ácidos Indolacéticos , Selênio , Ácidos Indolacéticos/metabolismo , Bacillus/metabolismo , Bacillus/efeitos dos fármacos , Selênio/química , Selênio/farmacologia , Selênio/metabolismo , Nanopartículas/química , Tamanho da Partícula
2.
Metabolites ; 12(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36557242

RESUMO

Selenium is an essential microelement required for human health. The biotransformation of selenium nanoparticles has attracted increasing attention in recent years. However, little of the literature has investigated the comprehensive evaluation of the strains for practical application and the effect on the functional properties in the existence of Se. The present study showed the selenite reduction strain Bacillus subtilis T5 (up to 200 mM), which could produce high yields of selenium polysaccharides and selenium nanoparticles in an economical and feasible manner. Biosynthesized selenium nanoparticles by B. subtilis T5 were characterized systematically using UV-vis spectroscopy, FTIR, Zeta Potential, DLS, and SEM techniques. The biosynthesized SeNPs exhibited high stability with small particle sizes. B. subtilis T5 also possessed a tolerance to acidic pH and bile salts, high aggregation, negative hemolytic, and superior antioxidant activity, which showed excellent probiotic potential and can be recommended as a potential candidate for the selenium biopharmaceuticals industry. Remarkably, B. subtilis T5 showed that the activity of α-amylase was enhanced with selenite treatment to 8.12 U/mL, 2.72-fold more than the control. The genus Bacillus was first reported to produce both selenium polysaccharides with extremely high Se-content (2.302 g/kg) and significantly enhance the activity to promote α-amylase with selenium treatment. Overall, B. subtilis T5 showed potential as a bio-factory for the biosynthesized SeNPs and organ selenium (selenium polysaccharide), providing an appealing perspective for the biopharmaceutical industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA