RESUMO
The Risley prism's compact structure, dynamic responsiveness, and high tracking accuracy make it ideal for photoelectric image tracking. To realize fast and high-precision tracking of the target, we propose an image-based closed-loop tracking cascade control (IBCLTCR-F) system using a single image detector that integrates the Risley prism and fast steering mirror (FSM). Firstly, We propose a cascade control input-decoupling method (CCIDM) for the IBCLTCR-F system to solve the complex problem of coarse-fine control input decoupling in traditional single detector cascaded control systems. Moreover, the CCIDM method ensures that the FSM deflection angle is small and does not exceed its range during the fine tracking process, by using the Risley prism to compensate for the FSM deflection angle. Next, we design the image-based closed-loop tracking controllers of the Risley prism system and FSM system and analyze the stability of the IBCLTCR-F system. Finally, we track static and moving targets through experiments. The experimental results verify the feasibility of the IBCLTCR-F system, the effectiveness of the decoupling method, and the fast and high-precision tracking of the targets.
RESUMO
Time-restricted eating (TRE) effectively improves healthspan, including controlling obesity and improving metabolic health. To date, few meta-analyses have been conducted to explore the effects of various protocols of TRE in participants with overweight/obesity. PubMed, Embase and the Cochrane Central Register of Controlled Trials were searched up until October 15, 2022. Randomized and non-randomized clinical trials that investigated the effect of TRE on body weight, body composition and cardiometabolic parameters in participants with overweight/obesity were included. Mean differences of changes from the baseline were used for all analyses between the two groups. Prespecified subgroup analyses based on different protocols of TRE were performed. Twenty-three studies were included in the meta-analysis with 1867 participants. TRE interventions led to significant changes in body weight. When energy restriction strategies were conducted in both the TRE and control groups, the weight-loss effect of TRE remained significant. TRE with 4 â¼ 8h feeding window, morning or late eating strategies, led to reduction in body weight and fat mass for at least 8 wk. Hence TRE is a potential and effective approach for weight loss for participants with overweight/obesity. An 8h-TRE intervention with a morning eating strategy for at least eight weeks might be the optimum TRE intervention mode.
RESUMO
Proteins are essential to human health with enormous food applications. Despite their advantages, plant and animal proteins often exhibit limited molecular flexibility and poor solubility due to hydrogen bonds, hydrophobic interactions, and ionic interactions within their molecular structures. Thus, there is an urgent need to modify the rigid structure of proteins to enhance their stability and functional properties. Ultrasound-assisted ionic liquid (UA-IL) treatment for developing compound modification and producing proteins with excellent functional properties has received interest. However, no review specifically addresses the interactions between UA-ILs and proteins. Hence, this review focused on recent research advancements concerning the effects and potential reaction mechanisms of UA-ILs on the physicochemical properties (including particle size; primary, secondary, and tertiary structure; and surface morphology) as well as the functionality (such as solubility, emulsifying properties, and foaming ability) of proteins. Moreover, the safety evaluation of modified proteins was also discussed from various perspectives, such as acute and chronic toxicity, genotoxicity, cytotoxicity, and environmental and microbial toxicity. This review demonstrated that UA-IL treatment-induced protein structural changes significantly impact the functional characteristics of proteins. This treatment approach efficiently promotes protein structure stretching and spatial rearrangement through cavitation, thermal effects, and ionic interactions. As a result, the functional properties of modified proteins exhibited an obvious enhancement, thereby bringing more opportunities to utilize modified protein products in the food industry. Potential future directions for protein modification using UA-ILs were also proposed.
Assuntos
Líquidos Iônicos , Animais , Humanos , Líquidos Iônicos/química , Proteínas , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Tamanho da PartículaRESUMO
Schwann cells play an essential role in peripheral nerve regeneration by generating a favorable microenvironment. Gastric inhibitory peptide/gastric inhibitory peptide receptor (GIP/GIPR) axis deficiency leads to failure of sciatic nerve repair. However, the underlying mechanism remains elusive. In this study, we surprisingly found that GIP treatment significantly enhances the migration of Schwann cells and the formation of Schwann cell cords during recovery from sciatic nerve injury in rats. We further revealed that GIP and GIPR levels in Schwann cells were low under normal conditions, and significantly increased after injury demonstrated by real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. Wound healing and Transwell assays showed that GIP stimulation and GIPR silencing could affect Schwann cell migration. In vitro and in vivo mechanistic studies based on interference experiment revealed that GIP/GIPR might promote mechanistic target of rapamycin complex 2 (mTORC2) activity, thus facilitating cell migration; Rap1 activation might be involved in this process. Finally, we retrieved the stimulatory factors responsible for GIPR induction after injury. The results indicate that sonic hedgehog (SHH) is a potential candidate whose expression increased upon injury. Luciferase and chromatin immunoprecipitation (ChIP) assays showed that Gli3, the target transcription factor of the SHH pathway, dramatically augmented GIPR expression. Additionally, in vivo inhibition of SHH could effectively reduce GIPR expression after sciatic nerve injury. Collectively, our study reveals the importance of GIP/GIPR signaling in Schwann cell migration, providing a therapeutic avenue toward peripheral nerve injury.
Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Proteínas Hedgehog/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Transdução de Sinais/fisiologia , Neuropatia Ciática/metabolismo , Nervo Isquiático/lesões , Receptores de Peptídeos/metabolismo , Células de Schwann/metabolismoRESUMO
The Local Binary Pattern (LBP) and its variants are capable of extracting image texture and have been successfully applied to classification. However, LBP has not been used to extract and describe the texture of polarized images, and simple LBP cannot characterize the polarized texture information from different polarizations of angles. In order to solve these problems, we propose a new multi-angle orthogonal difference polarization image texture descriptor (MODP_ITD) by analyzing the relationship between the difference of orthogonal difference polarization images from different angles and the pixel intensity distribution in the local neighborhood of images from different angles. The MODP_ITD consists of three patterns: multi-angle polarization orthogonal difference local binary pattern (MODP_LBP), multi-angle polarization orthogonal difference local sampling point principal component sequence pattern (MODP_LPCSP) and multi-angle orthogonal difference polarization local difference binary pattern (MODP_LDBP). The MODP_LBP extracts local corresponding texture characteristics of polarized orthogonal difference images from multiple angles. The MODP_LPCSP sorts the principal component order of each angle orthogonal difference local sampling point. The MODP LDBP extracts the local difference characteristics between different angles by constructing a new polarized image. Then, the frequency histograms of MODP_LBP, MOD_LPCSP ,and MODP_LDBP are cascaded to generate MODP_ITD, so as to distinguish local neighborhoods. By using vertical and parallel polarization and unpolarized light active illumination, combined with the measurements at three different detection zenith angles, we constructed a polarization texture image database. A substantial number of experimental results on the self-built database show that our proposed MODP_ITD can represent the detailed information of polarization images texture. In addition, compared with the existing LBP methods, The MODP_ITD has a competitive advantage in classification accuracy.
RESUMO
Chinese Baijiu, the national liquor of China, is also one of the world-renowned distilled spirits. Jiuqu, a fermentation starter, is the masterpiece of traditional food biotechnology with a long history in China. Compared to western brewing technology of using malt and yeast in stages, the mode of using jiuqu (or combined with pit mud, a activated sludge) for Baijiu brewing is recognized in China. So far, culture-dependent, molecular biology technology and omics approaches have provided deeper insights into study the jiuqu microbiome. Jiuqu is considered to be a microecosystem with diverse and unique microorganisms, in which fascinating features of saccharification, alcohol fermentation, and flavors generation appear. However, knowledge about microbial diversity of jiuqu and their roles involved in Baijiu fermentation is still fragmentary and not systematic enough. Therefore, this review introduced and compared three basic types of jiuqu starter: daqu, xiaoqu and fuqu. We described in detail the microbial succession during preparation of jiuqu, aiming to emphasize that succession process promotes to formation of its stable distribution of microbial community. We also summarized the main species originated from jiuqu and their various properties. Furthermore, reported results about fermentation features of saccharification, alcohol fermentation, and flavors generation in jiuqu microbiome were generalized, and these features were emphasized to play the potential role in Baijiu brewing. Although the current work is limited, promising clues can be traced for future investigation on comprehensive metabolic processes in jiuqu. KEY POINTS: ⢠The various microorganisms present in jiuqu, and each has its specific property. ⢠Microbial succession in preparation promotes to distribution of microbial community. ⢠Jiuqu contributes the potential of saccharification, fermentation and flavors generation to Baijiu brewing.
Assuntos
Bactérias , Microbiota , Fermentação , Bactérias/genética , Bactérias/metabolismo , Bebidas Alcoólicas/análise , ChinaRESUMO
The active ester-synthesis microorganisms in medium-high temperature Daqu (MHT-Daqu) largely impact the strong-flavor Baijiu quality, while their actual composition and metabolic mechanism remain unclear. Here, to explore how the active microbiota contributes to MHT-Daqu ester biosynthesis, metatranscriptomic and metaproteomic analyses coupled with experimental verification were performed. The results showed that the MHT-Daqu microbiota with the higher ester-forming ability exhibited a more active dynamic alteration from transcription to translation. The genera Aspergillus, Bacillus, Leuconostoc, and Pediococcus could transcribe and translate obviously more ester-forming enzymes. In the ester-synthesis metabolic network, the synergetic microbiota confirmed by interaction analysis, containing Eurotiales, Bacillales, and Saccharomycetales, played an essential role, in which the Eurotiales and its representative genus Aspergillus contributed the highest transcript and protein abundance in almost every metabolic process, respectively. The recombined fermentation verified that their corresponding genera could produce the ester and precursor profiles very close to that of the original MHT-Daqu active microbiota, while the microbiota without Aspergillus caused a polar separation. These results indicated that the synergetic microbiota with Aspergillus as the core dominated the metabolic network of ester synthesis in MHT-Daqu. Our study provides a detailed framework of the association between the active synergetic microbiota and ester synthesis in MHT-Daqu.
Assuntos
Bactérias , Microbiota , Bebidas Alcoólicas/análise , Temperatura , Aspergillus/genética , Fermentação , Redes e Vias MetabólicasRESUMO
BACKGROUND: The saccharification function of daqu is usually characterized by two indicators: saccharification power and liquefaction power. Daqu provides diverse microbial saccharifying enzymes for hydrolyzing carbohydrate in Baijiu fermenting grain. Obviously, the composition of microbial communities and enzymatic genes in different types of daqu cultured at varied temperatures is different. However, these differences in saccharification function are not fully understood. RESULTS: The findings suggested that the saccharification power and liquefaction power of jiangxiangxing daqu were lower than those of nongxiangxing daqu throughout the production process. We employed metagenomics to find evidence that a mode of multiple saccharifying enzymes involving amylase, cellulase and hemicellulase originating from various microbes exists in daqu. Moreover, a totality of 541 related differential genes were obtained, some of which, annotated to genera of Aspergillus, Lactobacillus and Weissella, were significantly enriched (P < 0.05) in nongxiangxing daqu, while others, annotated to thermophilic genera of Virgibacillus, Bacillus, Kroppenstedtia and Saccharopolyspora, showed a higher relative abundance in jiangxiangxing daqu (P < 0.05). CONCLUSION: Various microbial communities of daqu showed diverse saccharification capacity during cultivation of different parameters. These findings are helpful in comprehending the saccharification functional genes of daqu. © 2022 Society of Chemical Industry.
Assuntos
Bacillus , Microbiota , Fermentação , Bactérias/genética , Bacillus/genética , China , Bebidas Alcoólicas/análiseRESUMO
BACKGROUND: The ester-synthesis enzymes influenced by environmental factors during Daqu-making process largely determine the flavor of Chinese liquor, but the main ester-synthesis enzyme and its key influencer remain unclear. Here, the volatile ester profiles over the whole Daqu-making process, under different treatments, for at least 90 days, were carefully analyzed, and the potential ester-synthesis enzymes, as well as their dependently environmental factors, were explored. RESULTS: In the detected 46 volatile esters, only the short-chain (C4-C8) and medium-chain (C9-C13) ester content obviously changed, as the primary contributor discriminating different samples. Their trends were both consistent with that of the alcohols and the primary metabolism, which included alcohol acyltransferases (AATs) reaction with alcohols and acyl-CoAs as the substrates. Among the potential ester-synthesis enzymes, the typical AAT activity also exhibited the highest correlation with the short- and medium-chain esters (r > 0.78, P < 0.05). The Mantel test between environmental factors and ester production showed that temperature of Daqu was directly correlated with the short-chain esters (r = 0.58, P < 0.01) and AAT activity (r = 0.56, P < 0.01). Further, the short- and medium-chain ester content in Daqu under the treatment nearer to the reported optimal temperature of 40-50 °C of AATs reaction was overall higher than that of the other treatment Daqu. CONCLUSION: This study revealed that the temperature-dependent AATs reaction was the main enzymatic method producing the short- and medium-chain esters over the whole Daqu-making process. The results could contribute to the flavor improvement of Baijiu. © 2022 Society of Chemical Industry.
Assuntos
Aciltransferases , Ésteres , Ésteres/química , Temperatura , Aciltransferases/metabolismo , Álcoois , FermentaçãoRESUMO
Facing the increasingly serious energy and environmental crisis, the development of heteronuclear metal-free double-atom catalysts is a potential strategy to realize efficient catalytic nitrogen reduction with low energy consumption and no pollution because it could combine the advantages of flexible active sites in double-atom catalysts while also being pollution-free and have high Faraday efficiency in metal-free catalysts simultaneously. However, according to the existing mechanism, the finite orbits of other nonmetallic atoms, except the boron atom, reduce the possibility of metal-free catalysis and hinder the development of heteronuclear metal-free double-atom catalysts. Herein, we propose a new "capture-backdonation-recapture" mechanism, which skillfully uses the electron capture-backdonation-recapture between boron, the substrate, and other nonmetallic elements to solve the above problems. Based on this mechanism, by means of the first-principle calculations, the material structure, adsorption energy, catalytic activity, and selectivity of 36 catalysts are systematically investigated to evaluate their catalytic performance. B-Si@BP1 and B-Si@BP3 are selected for their good catalytic performance and low limiting potentials of -0.14 and -0.10 V, respectively. Meanwhile, the "capture-backdonation-recapture" mechanism is also verified by analyzing the results of adsorption energy and electron transfer. Our work broadens the ideas and lays the theoretical foundation for the development of heteronuclear metal-free double-atom catalysts in the future.
RESUMO
Phenol-soluble modulin α3 (PSMα3) can self-assemble into fibrous assemblies with a unique "cross-α" sheet structure, which serves as a key virulence factor in the infection of Staphylococcus aureus. However, the structure-cytotoxicity relationships of PSMα3 still remain elusive. Herein, we utilized the strategy of salt-inducing assembly polymorphism to controllably prepare three PSMα3 assemblies with morphological and structural distinctions, including amorphous aggregates (AAs), rigid fibrils (RFs), and oligomers/curvilinear fibrils (OCFs), which provided a convincing method to facilitate the structure-cytotoxicity investigation of PSMα3 assemblies. Our results affirmed that amyloid fibrillation was essential for the enhancement of PSMα3 cytotoxicity, which was proved based on the evidence that RFs and OCFs both triggered more obvious cytotoxicity than AAs. Furthermore, our study also demonstrated that the cytotoxicity was severely dependent on the size and structure of PSMα3 fibrils. In detail, smaller OCFs rich in α-helices exhibited stronger virulence than RFs with larger sizes and low α-helical contents. The cytotoxicity caused by such fibrils was achieved via a membrane-disrupting mechanism, in which RFs and OCFs might be prone to membrane thinning and perforation, respectively. This strategy of salt-inducing PSMα3 assembly polymorphism facilitated the comprehension of the relationship between the characteristics of PSMα3 assemblies and their cytotoxicity and was also helpful to understanding the intrinsic assembly mechanism of the PSMα3.
Assuntos
Toxinas Bacterianas , Amiloide/química , Toxinas Bacterianas/química , Cloreto de Sódio , Staphylococcus aureusRESUMO
With the wide application of image fusion technology in target detection and other fields, the fusion of polarization images and other intensity images is becoming a research focus. Traditional polarization image fusion includes intensity, degree of linear polarization (DOLP), and angle of polarization (AOP). However, images of DOLP and AOP fusion cannot meet the requirements of outstanding positive characteristics. Therefore, we propose a method to calculate the polarization characteristics image that can reflect the difference of polarization characteristics of different materials. The method and process are as follows: First, the polarization detection angle is divided into several angle intervals, and the orthogonal difference characteristics (ODC) image of each interval is obtained by weighting and accumulating the AOP probability density of the angle in the interval and the correlation between images. Second, the ODC images are reconstructed in the gradient domain, and the multi-angle orthogonal differential polarization characteristics (MODPC) image is obtained. The MODPC image is fused with the visible intensity image, and the fusion results are evaluated by using image evaluation indexes such as contrast (C), average gradient (AG), image entropy (E), and peak signal-to-noise ratio (PSNR). The experimental results show that the MODPC and S 0 fusion result images are superior to the DOLP and S 0 fusion results in terms of subjective visual perception and objective indicators among the six classical fusion algorithms. The proposed MODPC image can be applied in target detection.
RESUMO
BACKGROUD: Chinese Luzhou-flavor baijiu (LFB) was fermented in an underground cellar, and the bottom and side of the cellar were covered with pit muds (PMs), where the metabolic activity of the microorganisms had a significant effect on the LFB quality. PMs can be divided into aged pit mud (AP) and degenerated pit mud (DP), thus, the qualities of LFB generated from AP and DP were different. In this essay, metatranscriptomics method was applied to illustrate the differences of the two PMs, as well as to search out the pivotal microorganisms and genes influencing the quality of LFB. RESULTS: Archaea, Clostridium and some thermophilic microorganisms might bring significant effect in AP, while the active eukaryota and Anaeromyxobacter would cause degeneration in PM. Also, the metabolism of carbohydrate and amino acid were more active in AP. What is more, carbohydrate, amino acid and their derivant can produce important organic acids via the activity of the microorganisms in PMs. There were eight critical enzymes noticed in the organic acids metabolic pathway, which were more actively expressed in AP, demonstrating active expression of the critical genes related to organic acid metabolism could have a positive effect on LFB quality. CONCLUSION: This study identified specific differences in active microorganisms, active expressed genes and the expression levels of key genes in vital metabolic pathway between AP and DP. Which may be the actual reason for the differences in the quality of LFB made from different PMs. Mastering these results will provide assistance to improve the quality of LFB. © 2021 Society of Chemical Industry.
Assuntos
Bactérias/metabolismo , Aromatizantes/metabolismo , Microbiota , Vinho/microbiologia , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , China , Fermentação , Microbiologia Industrial/instrumentação , Microbiologia Industrial/métodos , Fatores de Tempo , Vinho/análiseRESUMO
Diosgenin is widely distributed in many plants, such as Polygonatum sibiricum, Paris polyphylla, Dioscorea oppositifolia, Trigonella foenum-graecum, Costus speciosus, Tacca chantrieri, which has good anti-tumor activity and preferable effects on preventing atherosclerosis, protecting the heart, treating diabetes, etc. This review combed through the anti-tumor mechanisms of diosgenin encompassing lung, breast, gallbladder, liver, oral cavity, stomach, bladder, bone marrow, etc. Besides, it was discovered that diosgenin mainly exerts its effect by inhibiting tumor cell migration, suppressing tumor cell proliferation and growth, and inducing cell apoptosis. However, problems like low yield and bioavailability frequently exist in natural diosgenin. This review introduced methods such as structural modification, dosage form optimization and combination medication to improve the yield and anti-tumor activity of diosgenin. Via the summary of this paper, it is expected to provide theoretical basis for the rational exploitation and utilization of diosgenin.
Assuntos
Produtos Biológicos , Diosgenina , Trigonella , Apoptose , Proliferação de Células , Diosgenina/farmacologiaRESUMO
Two-dimensional (2D) superconductors, which can be widely applied in optoelectronic and microelectronic devices, have gained renewed attention in recent years. Based on the crystal structure prediction method and first-principles calculations, we obtain four novel 2D tungsten boride structures of tetr-, hex-, and tri-W2B2 and hex-WB4 and investigate their bonding types, electronic properties, phonon dispersions and electron-phonon coupling (EPC). The results show that both tetr- and hex-W2B2 are intrinsic phonon-mediated superconductors with a superconducting transition temperature (Tc) of 7.8 and 1.5 K, respectively, while tri-W2B2 and hex-WB4 are normal metals. We demonstrate that carrier doping as well as biaxial strain can soften the low-frequency phonon modes and enhance the strength of the EPC. While the Tc of tetr-W2B2 can be increased to 15.4 K under a compressive strain of -2%, the Tc of hex-W2B2 can be enhanced to 5.9 K by a tensile strain of +4%. With the inclusion of spin-orbit couping (SOC), the value of Tc decreases by 38.5% in our systems. Furthermore, we explore the stabilities and mechanical properties of tetr- and hex-W2B2 and indicate that they may be prepared by growing on ZnS(100) and ZnS(111), respectively. Our findings provide novel 2D superconducting materials and will stimulate more efforts in this filed.
RESUMO
Two types of mono-ester-functionalized pillar[5]arenes, P1 and P2, bearing different side-chain groups, were synthesized. Their host-guest complexation and self-inclusion properties were studied by 1H NMR and 2D nuclear overhauser effect spectroscopy (NOESY) NMR measurements. The results showed that the substituents on their phenolic units have a great influence on the self-assembly of both pillar[5]arenes, although they both could form stable pseudo[1]rotaxanes at room temperature. When eight bulky 4-brombutyloxy groups were capped on the cavity, instead of methoxy groups, pseudo[1]rotaxane P1 became less stable and its locked ester group in the inner space of cavity was not as deep as P2, leading to distinctly different host-guest properties between P1 and P2 with 1,6-dibromohexane. Moreover, pillar[5]arene P1 displayed effective molecular recognition toward 1,6-dichlorohexane and 1,2-bromoethane among the guest dihalides. In addition, the self-complex models and stabilities between P1 and P2 were also studied by computational modeling and experimental calculations.
Assuntos
Calixarenos/química , Modelos Químicos , Rotaxanos/química , Ésteres , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Eletricidade EstáticaRESUMO
Derived from RNA, 5'-ribonucleotides, especially Inosine-5'-monophosphate (IMP) and guanosine-5'-monophosphate (GMP), can enhance the umami taste of soy sauce. In this study, the RNA content of three different salt-tolerant yeasts was examined. The most valuable strain was subjected to atmospheric and room-temperature plasma (ARTP) mutagenesis, which improved its RNA content by 160.54%. Regular fermentation with RNA-enhanced strain failed to increase the amount of 5'-ribonucleotides in the soy sauce due to hydrolysis by phosphatase. A two-stage fermentation strategy was then carried out. Aroma compounds were mainly synthesized in the first stage, and RNA-enriched biomass was massively produced in the second stage followed by heat treatment to inactivate phosphatase. After the proposed strategy was applied, IMP and GMP in the soy sauce reached 68.54 and 89.37 mg/L, respectively. Moreover, the amounts of key aroma compounds and organic acids significantly increased. Results may provide new insights for improving the quality of soy sauce through microorganism breeding and fermentation control.
Assuntos
Mutagênese , Gases em Plasma , RNA , Tolerância ao Sal/genética , Tolerância ao Sal/efeitos da radiação , Alimentos de Soja , Zygosaccharomyces/genética , Zygosaccharomyces/efeitos da radiação , Cruzamento , Fermentação , Alimentos Fermentados , Microbiologia de Alimentos , Cloreto de Sódio , Paladar , Temperatura , Zygosaccharomyces/fisiologiaRESUMO
Vasculogenic mimicry (VM) constitutes a novel approach for tumour blood supply and contributes to tumour metastasis and poor prognosis in patients with melanoma. Myoferlin (MYOF), a type II membrane protein involved in membrane regeneration and repair, is elevated in several malignant tumours, especially in advanced melanomas. This study aims to investigate the role and mechanism of MYOF in the regulation of VM. VM structures were found in 14 of 52 tested melanoma samples, and high MYOF expression correlated with VM structures. According to Kaplan-Meier survival curves, VM channels and elevated MYOF expression both correlated with poor prognosis in melanoma patients. Down-regulation of MYOF by siRNA severely impaired the capability of A375 cells to form VM structures in vitro. Further studies demonstrated MYOF knockdown inhibited cell migration and invasion, which is required for VM formation, via decreasing MMP-2 expression as evidenced by Western blotting, RT-RCP and ELISA results. SB-3CT, a specific inhibitor of MMP-2, showed similar inhibiting effects with siMYOF, further supporting that MYOF down-regulation inhibits MMP-2 expression to affect VM formation. Moreover, MYOF knockdown suppress VM formation by A375 cells by inducing mesenchymal-to-epithelial transition (MET). After down-regulating MYOF, focal adhesions were enlarged and A375 cells developed into a clear epithelial morphology. Such cells acquired the expression of E-cadherin at adherens junctions along with a loss of mesenchymal markers, such as Vimentin and Twist1. In conclusion, MYOF plays an important role in VM and knockdown of MYOF suppresses VM formation via decreasing MMP-2 and inducing MET in A375 melanoma cells.
Assuntos
Proteínas de Ligação ao Cálcio/genética , Regulação para Baixo , Transição Epitelial-Mesenquimal/genética , Metaloproteinase 2 da Matriz/genética , Melanoma/genética , Proteínas de Membrana/genética , Proteínas Musculares/genética , Neovascularização Patológica/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Feminino , Adesões Focais/genética , Adesões Focais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Melanoma/irrigação sanguínea , Melanoma/metabolismo , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Neovascularização Patológica/metabolismo , Interferência de RNARESUMO
This corrects the article DOI: 10.1038/bjc.2016.367.
RESUMO
A novel and effective process was put forward for converting rice straw into feed by combining diluted acid hydrolysis and ammonization with Rhodospirillum rubrum fermentation. After pretreatment with dilute sulfuric or phosphoric acid (1%, w/w) at 100°C, materials were subjected to fermentation under several gases (N2, CO2, and air) and different light intensities in a 2-L fermentor. The key indexes of feed for fermented materials were estimated and several toxic substances were investigated during the fermentation. Following sulfuric acid treatment, the true protein of rice straw increased from 29 to 143 g kg-1 and the crude fiber decreased from 359 to 136 g kg-1 after fermentation at 0.3 L min-1 L-1 of N2 flow and a light intensity of 3400 lux; and following phosphoric acid treatment, the true protein increased by 286% and the crude fiber decreased by 52% after fermentation at 0.4 L min-1 L-1 of N2 flow and a light intensity of 3000 lux. Other key contents were also improved for use as feed, and some toxic substances (i.e., furfural, hydroxymethylfurfural, acetic acid, phenol, cresol) produced by the pretreatments could be removed at low levels during the fermentations.