Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(18): e202320152, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38437457

RESUMO

Dopant-free hole transporting materials (HTMs) is significant to the stability of perovskite solar cells (PSCs). Here, we developed a novel star-shape arylamine HTM, termed Py-DB, with a pyrene core and carbon-carbon double bonds as the bridge units. Compared to the reference HTM (termed Py-C), the extension of the planar conjugation backbone endows Py-DB with typical intermolecular π-π stacking interactions and excellent solubility, resulting in improved hole mobility and film morphology. In addition, the lower HOMO energy level of the Py-DB HTM provides efficient hole extraction with reduced energy loss at the perovskite/HTM interface. Consequently, an impressive power conversion efficiency (PCE) of 24.33 % was achieved for dopant-free Py-DB-based PSCs, which is the highest PCE for dopant-free small molecular HTMs in n-i-p configured PSCs. The dopant-free Py-DB-based device also exhibits improved long-term stability, retaining over 90 % of its initial efficiency after 1000 h exposure to 25 % humidity at 60 °C. These findings provide valuable insights and approaches for the further development of dopant-free HTMs for efficient and reliable PSCs.

2.
Nanomicro Lett ; 16(1): 75, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175454

RESUMO

Aqueous zinc metal batteries (AZMBs) are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc (Zn) metal. However, several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries (AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented.

3.
Sci Total Environ ; 917: 170497, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38301775

RESUMO

Climate change is leading to the upward migration of treelines in mountainous regions, resulting in changes to the carbon and nitrogen inputs in soils. The impact of these alterations on the microbial mineralization of the existing soil organic carbon (SOC) pool remains uncertain, making it challenging to anticipate their effects on the carbon balance. To enhance our prediction and understanding of native SOC mineralization in Himalayan regions resulting from treeline shifts, a study was conducted to quantify soil priming effects (PEs) at high elevations above the treeline ecosystem. In laboratory incubation, soils were treated with a combination of 13C-glucose and varying nitrogen rates, along with carbon-only treatments and control groups without any amendments. The addition of carbon with varying nitrogen addition rates exhibited diverse PEs on native SOC. A highly positive PE was observed under low nitrogen input due to a high carbon/nitrogen imbalance and increased L-leucine aminopeptidase (LAP) activity, coupled with low nitrogen availability and carbon use efficiency (CUE). In contrast, a positive PE declined following high nitrogen input due to a low carbon/nitrogen imbalance and LAP activity, coupled with high nitrogen availability and CUE. These findings support the concept that multiple mechanisms (i.e., microbial nitrogen mining and microbial metabolic efficiency) exist that regulate SOC mineralization under the addition of carbon with varying nitrogen rates. Thus, an increase in nitrogen availability fulfils microbial nitrogen demand, reduces the microbial carbon/nitrogen imbalance, decreases enzyme activity that requires nitrogen and enhances microbial metabolic efficiency. Consequently, this mechanism reduces the positive PE, thereby serving as a potential tool for stabilizing native SOC in above-treeline ecosystems.


Assuntos
Carbono , Ecossistema , Solo , Nitrogênio/análise , Microbiologia do Solo
4.
ACS Appl Mater Interfaces ; 16(17): 22079-22088, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641564

RESUMO

In perovskite solar cells (PSCs), defects in the interface and mismatched energy levels can damage the device performance. Improving the interface quality is an effective way to achieve efficient and stable PSCs. In this work, a multifunctional dye molecule, named ThPCyAc, was designed and synthesized to be introduced in the perovskite/HTM interface. On one hand, various functional groups on the acceptor unit can act as Lewis base to reduce defect density and suppress nonradiative combinations. On the other hand, the stepwise energy-level alignment caused by ThPCyAc decreases the accumulation of interface carriers for facilitating charge extraction and transmission. Therefore, based on the ThPCyAc molecule, the devices exhibit elevated open-circuit voltage and fill factor, resulting in the best power conversion efficiency (PCE) of 23.16%, outperforming the control sample lacking the interface layer (PCE = 21.49%). Excitingly, when attempting to apply it as a self-assembled layer in inverted devices, ThPCyAc still exhibits attractive behavior. It is worth noting that these results indicate that dye molecules have great potential in developing multifunctional interface materials to obtain higher-performance PSCs.

5.
Adv Mater ; 36(28): e2310619, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718249

RESUMO

The orthogonal structure of the widely used hole transporting material (HTM) 2,2',7,7'-tetrakis(N, N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD) imparts isotropic conductivity and excellent film-forming capability. However, inherently weak intra- and inter-molecular π-π interactions result in low intrinsic hole mobility. Herein, a novel HTM, termed FTPE-ST, with a twist conjugated dibenzo(g,p)chrysene core and coplanar 3,4-ethylenedioxythiophene (EDOT) as extended donor units, is designed to enhance π-π interactions, without compromising on solubility. The three-dimensional (3D) configuration provides the material multi-direction charge transport as well as excellent solubility even in 2-methylanisole, and its large conjugated backbone endows the HTM with a high hole mobility. Moreover, the sulfur donors in EDOT units coordinate with lead ions on the perovskite surface, leading to stronger interfacial interactions and the suppression of defects at the perovskite/HTM interface. As a result, perovskite solar cells (PSCs) employing FTPE-ST achieve a champion power conversion efficiency (PCE) of 25.21% with excellent long-time stability, one of the highest PCEs for non-spiro HTMs in n-i-p PSCs. In addition, the excellent film-forming capacity of the HTM enables the fabrication of FTPE-ST-based large-scale PSCs (1.0 cm2) and modules (29.0 cm2), which achieve PCEs of 24.21% (certificated 24.17%) and 21.27%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA