RESUMO
It has long been recognized that atomic emission of radiation is not an immutable property of an atom, but is instead dependent on the electromagnetic environment1 and, in the case of ensembles, also on the collective interactions between the atoms2-6. In an open radiative environment, the hallmark of collective interactions is enhanced spontaneous emission-super-radiance2-with non-dissipative dynamics largely obscured by rapid atomic decay7. Here we observe the dynamical exchange of excitations between a single artificial atom and an entangled collective state of an atomic array9 through the precise positioning of artificial atoms realized as superconducting qubits8 along a one-dimensional waveguide. This collective state is dark, trapping radiation and creating a cavity-like system with artificial atoms acting as resonant mirrors in the otherwise open waveguide. The emergent atom-cavity system is shown to have a large interaction-to-dissipation ratio (cooperativity exceeding 100), reaching the regime of strong coupling, in which coherent interactions dominate dissipative and decoherence effects. Achieving strong coupling with interacting qubits in an open waveguide provides a means of synthesizing multi-photon dark states with high efficiency and paves the way for exploiting correlated dissipation and decoherence-free subspaces of quantum emitter arrays at the many-body level10-13.
RESUMO
Quantum technologies would benefit from the development of high-performance quantum defects acting as single-photon emitters or spin-photon interfaces. Finding such a quantum defect in silicon is especially appealing in view of its favorable spin bath and high processability. While some color centers in silicon have been emerging in quantum applications, there remains a need to search for and develop new high-performance quantum emitters. By searching a high-throughput computational database of more than 22,000 charged complex defects in silicon, we identify a series of defects formed by a group III element combined with carbon ((A-C)Si with A = B, Al, Ga, In, Tl) and substituting on a silicon site. These defects are analogous structurally, electronically, and chemically to the well-known T center in silicon ((C-C-H)Si), and their optical properties are mainly driven by an unpaired electron on the carbon p orbital. They all emit in the telecom, and some of these color centers show improved properties compared to the T center in terms of computed radiative lifetime, emission efficiency, or smaller optical linewidth. The kinetic barrier computations and previous experimental evidence show that these T center-like defects can be formed through the capture of a diffusing carbon by a substitutional group III atom. We also show that the synthesis of hydrogenated T center-like defects followed by a dehydrogenation annealing step could facilitate the formation of these defects. Our work motivates further studies on the synthesis and control of this new family of quantum defects and demonstrates the use of high-throughput computational screening to discover new color center candidates.
RESUMO
Synthesizing many-body quantum systems with various ranges of interactions facilitates the study of quantum chaotic dynamics. Such extended interaction range can be enabled by using nonlocal degrees of freedom such as photonic modes in an otherwise locally connected structure. Here, we present a superconducting quantum simulator in which qubits are connected through an extensible photonic-bandgap metamaterial, thus realizing a one-dimensional Bose-Hubbard model with tunable hopping range and on-site interaction. Using individual site control and readout, we characterize the statistics of measurement outcomes from many-body quench dynamics, which enables in situ Hamiltonian learning. Further, the outcome statistics reveal the effect of increased hopping range, showing the predicted crossover from integrability to ergodicity. Our work enables the study of emergent randomness from chaotic many-body evolution and, more broadly, expands the accessible Hamiltonians for quantum simulation using superconducting circuits.
RESUMO
In this study, a carbon membrane-mediated CdSe and TiO2 ternary film (CdSe/C/TiO2) was prepared to degrade methylene blue (MB). Carbon membrane and CdSe were introduced to the surface of a TiO2 nanofiber film via an in situ hydrothermal deposition process successively. The investigation shows that the carbon membrane not only provides a charge transfer channel to promote the transfer of electron from the conduction band of CdSe to that of TiO2, but also improves the poor conduct between the TiO2 film and electrolyte. The synergies between the carbon membrane and CdSe can make the ternary system harvest more visible light energy and facilitate the charge transfer property of TiO2. The current density of CdSe/C/TiO2 was about 9 folds higher compared with that of pure TiO2 under UV and visible light irradiations. This ternary hybrid exhibits a superior activity during the photoelectrochemical (PEC) degradation of MB, and 92.43% can be removed after 120 min irradiation, which is improved by 21.14% than that of TiO2.
RESUMO
Dissipative Kerr solitons are self-sustaining optical wavepackets in resonators. They use the Kerr nonlinearity to both compensate dispersion and offset optical loss. Besides providing insights into nonlinear resonator physics, they can be applied in frequency metrology, precision clocks, and spectroscopy. Like other optical solitons, the dissipative Kerr soliton can radiate power as a dispersive wave through a process that is the optical analogue of Cherenkov radiation. Dispersive waves typically consist of an ensemble of optical modes. Here, a limiting case is studied in which the dispersive wave is concentrated into a single cavity mode. In this limit, its interaction with the soliton induces hysteresis behaviour in the soliton's spectral and temporal properties. Also, an operating point of enhanced repetition-rate stability occurs through balance of dispersive-wave recoil and Raman-induced soliton-self-frequency shift. The single-mode dispersive wave can therefore provide quiet states of soliton comb operation useful in many applications.
RESUMO
A point Electrical Thermal Acoustic (ETA) device based on aluminum nanowire contacts is designed and fabricated. Interdigitated structural aluminum nanowires are released from the substrate by Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE). By releasing the interdigitated structure, the nanowires contact each other at approximately 1 mm above the wafer, forming a Point Contact Structure (PCS). It is found that the PCS acoustic device realizes high efficiency when a biased AC signal is applied. The PCS acoustic device reaches a sound pressure level as high as 67 dB at a distance of 1 cm with 74 mW AC input. The power spectrum is flat, ranging from 2 kHz to 20 kHz with a less than ±3 dB fluctuation. The highest normalized Sound Pressure Level (SPL) of the point contact structure acoustic device is 18 dB higher than the suspended aluminum wire acoustic device. Comparisons between the PCS acoustic device and the Suspended Aluminum Nanowire (SAN) acoustic device illustrate that the PCS acoustic device has a flatter power spectrum within the 20 kHz range, and enhances the SPL at a lower frequency. Enhancing the response at lower frequencies is extremely useful, which may enable earphone and loudspeaker applications within the frequency range of the human ear with the help of pulse density modulation.