Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Small ; 20(25): e2309487, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38197548

RESUMO

Cellular senescence, a vulnerable state of growth arrest, has been regarded as a potential strategy to weaken the resistance of tumor cells, leading to dramatic improvements in treatment efficacy. However, a selective and efficient strategy for inducing local tumor cellular senescence has not yet been reported. Herein, piezoelectric catalysis is utilized to reduce intracellular NAD+ to NADH for local tumor cell senescence for the first time. In detail, a biocompatible nanomedicine (BTO/Rh-D@M) is constructed by wrapping the piezoelectric BaTiO3/(Cp*RhCl2)2 (BTO/Rh) and doxorubicin (DOX) in the homologous cytomembrane with tumor target. After tumors are stimulated by ultrasound, negative and positive charges are generated on the BTO/Rh by piezoelectric catalysis, which reduce the intracellular NAD+ to NADH for cellular senescence and oxidize H2O to reactive oxygen species (ROS) for mitochondrial damage. Thus, the therapeutic efficacy of tumor immunogenic cell death-induced chemo-immunotherapy is boosted by combining cellular senescence, DOX, and ROS. The results indicate that 23.9% of the piezoelectric catalysis-treated tumor cells senesced, and solid tumors in mice disappeared completely after therapy. Collectively, this study highlights a novel strategy to realize cellular senescence utilizing piezoelectric catalysis and the significance of inducing tumor cellular senescence to improve therapeutic efficacy.


Assuntos
Senescência Celular , Doxorrubicina , Imunoterapia , Espécies Reativas de Oxigênio , Senescência Celular/efeitos dos fármacos , Animais , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Catálise , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Imunoterapia/métodos , NAD/metabolismo , NAD/química , Linhagem Celular Tumoral , Humanos , Titânio/química , Titânio/farmacologia , Neoplasias/terapia , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Ródio/química , Ródio/farmacologia , Compostos de Bário
2.
Small ; : e2310964, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030863

RESUMO

Photodynamic therapy (PDT) is long-standing suffered from elevated tumor interstitial fluid pressure (TIFP) and prevalent hypoxic microenvironment within the solid malignancies. Herein, sound-activated flexocatalysis is developed to overcome the dilemma of PDT through both enhancing tumor penetration of photosensitizers by reducing TIFP and establishing an oxygen-rich microenvironment. In detail, a Schottky junction is constructed by flexocatalyst MoSe2 nanoflowers and Pt. Subsequently, the Schottky junction is loaded with the photosensitizer indocyanine green (ICG) and encapsulated within tumor cytomembrane to constitute a bionic-flexocatalytic nanomedicine (MPI@M). After targeting the tumor, MPI@M orchestrates flexocatalytic water splitting in tumor interstitial fluid under acoustic stimulation to lower TIFP, which boosted the tumor penetration of ICG. Concurrently, the oxygen released from the flexocatalytic water splitting overcomes the limitation of hypoxia against PDT. Furthermore, superfluous singlet oxygen generated by PDT can induce mitochondrial dysfunction for further tumor cell apoptosis. After 60 min of flexocatalysis, both the 30% decrease of TIFP and the relieved tumor hypoxia are observed, significantly promoting the therapeutic effect of PDT. Consequently, MoSe2/Pt junction nanoflowers, with the excellent flexocatalytic performance, hold significant potential for future applications in biocatalytic cancer therapies.

3.
J Nanobiotechnology ; 22(1): 227, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711078

RESUMO

BACKGROUND: Elevated interstitial fluid pressure within tumors, resulting from impaired lymphatic drainage, constitutes a critical barrier to effective drug penetration and therapeutic outcomes. RESULTS: In this study, based on the photosynthetic characteristics of algae, an active drug carrier (CP@ICG) derived from Chlorella pyrenoidosa (CP) was designed and constructed. Leveraging the hypoxia tropism and phototropism exhibited by CP, we achieved targeted transport of the carrier to tumor sites. Additionally, dual near-infrared (NIR) irradiation at the tumor site facilitated photosynthesis in CP, enabling the breakdown of excessive intratumoral interstitial fluid by generating oxygen from water decomposition. This process effectively reduced the interstitial pressure, thereby promoting enhanced perfusion of blood into the tumor, significantly improving deep-seated penetration of chemotherapeutic agents, and alleviating tumor hypoxia. CONCLUSIONS: CP@ICG demonstrated a combined effect of photothermal/photodynamic/starvation therapy, exhibiting excellent in vitro/in vivo anti-tumor efficacy and favorable biocompatibility. This work provides a scientific foundation for the application of microbial-enhanced intratumoral drug delivery and tumor therapy.


Assuntos
Chlorella , Portadores de Fármacos , Fotossíntese , Animais , Camundongos , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Terapia Combinada , Fotoquimioterapia/métodos , Neoplasias/terapia , Antineoplásicos/farmacologia , Camundongos Endogâmicos BALB C , Sistemas de Liberação de Medicamentos/métodos , Verde de Indocianina/farmacocinética , Verde de Indocianina/química , Feminino
4.
Molecules ; 29(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39064898

RESUMO

Astaxanthin has 550 times more antioxidant activity than vitamin E, so it can scavenge free radicals in vivo and improve body immunity. However, the poor stability of astaxanthin becomes a bottleneck problem that limits its application. Herein, Haematococcus pluvialis (H. pluvialis) as a raw material was used to extract astaxanthin, and the optimal extraction conditions included the extraction solvent (EA:EtOH = 1:6, v/v), extraction temperature (60 °C), and extraction time (70 min). The extracted astaxanthin was then loaded using lecithin to form corresponding liposomes via the ethanol injection method. The results showed that the particle size and zeta potential of the prepared liposomes were 105.8 ± 1.2 nm and -38.0 ± 1.7 mV, respectively, and the encapsulation efficiency of astaxanthin in liposomes was 88.83%. More importantly, the stability of astaxanthin was significantly improved after being embedded in the prepared liposomes.


Assuntos
Lipossomos , Xantofilas , Xantofilas/isolamento & purificação , Xantofilas/química , Lipossomos/química , Tamanho da Partícula , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Clorófitas/química , Clorofíceas/química
5.
Nanotechnology ; 31(35): 355104, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32403097

RESUMO

Multifunctional nanoplatforms yield extremely high synergistic therapeutic effects on the basis of low biological toxicity. Based on the unique tumor microenvironment (TME), a liposomes (Lips)-based multifunctional antitumor drug delivery system known as GOD-PTL-Lips@MNPs was synthesized for chemotherapy, chemodynamic therapy (CDT), starvation therapy, and magnetic targeting synergistic therapy. Evidence has suggested that parthenolide (PTL) can induce apoptosis and consume excessive glutathione (GSH), thereby increasing the efficacy of chemodynamic therapy. On the other hand, glucose oxidase (GOD) can consume intratumoral glucose, lower pH and increase the level of H2O2 in the tumor tissue. Integrated Fe3O4 magnetic nanoparticles (MNPs) containing Fe2+ and Fe3+ effectively catalyzes H2O2 to a highly toxic hydroxyl radical (•OH) and provide magnetic targeting. During the course of in vitro and in vivo experiments, GOD-PTL-Lips@MNPs demonstrated remarkable synergistic antitumor efficacy. In particular, in mice receiving a 14 day treatment of GOD-PTL-Lips@MNPs, tumor growth was significantly inhibited, as compared with the control group. Moreover, toxicology study and histological examination demonstrated low biotoxicity of this novel therapeutic approach. In summary, our data suggests great antitumor potential for GOD-PTL-Lips@MNPs which could provide an alternative means of further improving the efficacy of anticancer therapies.


Assuntos
Antineoplásicos/farmacologia , Glucose Oxidase/administração & dosagem , Lipossomos/química , Sesquiterpenos/administração & dosagem , Neoplasias do Colo do Útero/tratamento farmacológico , Administração Intravenosa , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos , Sinergismo Farmacológico , Feminino , Glucose Oxidase/química , Glucose Oxidase/farmacologia , Glutationa/metabolismo , Células HeLa , Humanos , Nanopartículas de Magnetita , Camundongos , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Neoplasias do Colo do Útero/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Nanotechnology ; 30(5): 055602, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30520422

RESUMO

A new type of vapreotide-templated Ag/Au bimetallic nanoshells (Vap@Ag/AuNSs) were successfully designed and fabricated based on polypeptide-directed mineralization and hierarchical self-assembly mechanisms under mild synthetic conditions. The nanoparticles with polypeptides serving as a core and coated Ag/Au bimetallic nanoshells exhibit diverse advantages, such as excellent biocompatibility, tumor targeting and low-cost. The Vap@Ag/AuNSs share excellent dispersibility, uniform size (120 nm) and a positive zeta potential (36.74 ± 4.49 mV), hence they easily accumulate in negatively charged tumor tissue. The results of thermal imaging, temperature variation assays and photothermal conversion efficiency (41.6%) indicated that Vap@Ag/AuNSs have excellent photothermal conversion capability. Based on their photothermal response, as well as biocompatibility determined by MTT assay, the prominent anti-tumor effects of Vap@Ag/AuNSs have been verified by fluorescein diacetate staining. Therefore, Vap@Ag/AuNSs are novel and promising candidates for photothermal tumor therapy.


Assuntos
Antineoplásicos/química , Ouro/química , Minerais/química , Nanoconchas/química , Prata/química , Somatostatina/análogos & derivados , Materiais Biocompatíveis/química , Somatostatina/química , Temperatura
7.
Nanomedicine ; 15(1): 142-152, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300749

RESUMO

A multifunctional antitumor drug delivery system was synthesized based on graphene oxide (GO) for near-infrared (NIR) light controlling chemotherapeutic/photothermal (PTT) /photodynamic (PDT) trimodal synergistic therapy. The system named ICG-Wed-GO was formed by co-loading wedelolactone (Wed) and indocyanine green (ICG) on the surface of GO through π-π stacking interaction. Under NIR laser irradiation, ICG-Wed-GO could effectively absorb and transform optical energy to heat, generate reactive oxygen species (ROS) to ablating and damage tumor cells. The temperature of ICG-Wed-GO solution reached up to 79.4 °C in 10 min with NIR irradiation. In in vitro and in vivo study, ICG-Wed-GO showed excellent antitumor effect. After 14-day treatment of ICG-Wed-GO with NIR laser irradiation, the tumor disappeared completely on tumor-bearing mice. The low biotoxicity of ICG-Wed-GO was also proved. The system achieved the synergistic trimodal chemotherapeutic/photothermal/photodynamic treatment and demonstrated excellent antitumor effect, which is expected to have a greater potential for cancer therapy.


Assuntos
Cumarínicos/química , Sistemas de Liberação de Medicamentos , Grafite/química , Hipertermia Induzida , Verde de Indocianina/administração & dosagem , Fotoquimioterapia , Neoplasias do Colo do Útero/terapia , Animais , Corantes/administração & dosagem , Corantes/química , Feminino , Verde de Indocianina/química , Camundongos , Espécies Reativas de Oxigênio , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/patologia
8.
Nanomedicine ; 18: 303-314, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30326275

RESUMO

Development of combined chemo-photothermal nanoplatform is of great interest for enhancing antitumor efficacy. Herein, a multifunctional drug delivery system was synthesized based on gold-nanobranched coated betulinic acid liposomes (GNBS-BA-Lips) for chemo-photothermal synergistic therapy. In this system, GNBS-BA-Lips exhibited broad near-infrared (NIR) absorption, preferable photothermal response and good photostability under NIR irradiation. Importantly, the gold-nanobranched nanostructure possessed high photothermal conversion efficiency (η = 55.7%), and the temperature change (ΔT) reached 43.2 °C after laser irradiation for 5 min. Upon NIR irradiation, the nanocarriers apparently endowed higher cell uptake, resulting in an enhanced intracellular drug accumulation. Furthermore, the tumor growth inhibition ratio achieved from chemo-photothermal therapy of GNBS-BA-Lips was 86.9 ±â€¯1.1%, which was higher than that of the chemotherapy or photothermal therapy alone, showing an outstanding synergistic anticancer effect. Our data suggested that the nanoplatform should be considered as a critical platform in the development of cancer multi-mode therapies.


Assuntos
Antineoplásicos/farmacologia , Portadores de Fármacos/química , Ouro/química , Hipertermia Induzida , Nanoconchas/química , Fototerapia , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos , Endocitose/efeitos dos fármacos , Células HeLa , Humanos , Lipossomos , Nanoconchas/ultraestrutura , Triterpenos Pentacíclicos , Temperatura , Triterpenos/farmacologia , Ácido Betulínico
9.
J Environ Manage ; 235: 70-76, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30677657

RESUMO

In the past decades, the microbial fuel cell (MFC) technology has caught the attention of the scientific community for its potential in transforming petroleum hydrocarbon (PHC) pollutants directly into electricity through microbial catalyzed anodic. The microbe was one of the most important factors that both influence MFCs and PHC degradation. Here we aimed to identify new microbes to expand the list of microbial species which are both electrogenic and diesel hydrocarbon degrading. In this text, we depicted a strain of microbe named E2, isolated from on the anode surface of MFC, and using diesel as sole carbon source. E2 exhibited electrochemical activity in cyclic voltammetry curve, implicating that it had electrogenic ability. E2 degraded about 50% diesel (3.26 g/L) in maximum during 8 days. Pyrosequencing of 16S rRNA gene of E2 revealed E2 was a sub-strain of Vibrio. Corresponding to salt and alkali tolerant properties of vibrio, the optimal condition for E2 in degrading diesel was 3%-4% in salinity, and pH 8-9 in mineral medium. Collectively, as a member of Gammaproteobacteria class, E2 was novel marine microbe both electricity generation and diesel degradation, which may attract its future application toward artificial microbial community construction in MFC in promoting the PHC pollution removal.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Ambientais , Petróleo , Biodegradação Ambiental , Eletrodos , Hidrocarbonetos , RNA Ribossômico 16S
10.
Nanotechnology ; 29(40): 405101, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30004030

RESUMO

Hybrid liposome/metal nanoparticles are promising candidate drug-carriers for therapy of various diseases due to their unique photothermal effect. In this study, self-crystallized gold nanoparticles (Au NPs) and doxorubicin (DOX) were co-encapsulated within liposomes (Au/DOX-Lips) by thin film hydration and gel separation technology. The surface plasmon resonance bands of drug-carriers were controllable in the near-infrared (NIR) zone. When the complex liposome/metallic hybrids were irradiated by NIR light, they displayed higher endocytosis efficiency following the fracture of liposomal membranes and the release of Au NPs. Then, the Au NPs penetrated further into deeper tumor tissue to accomplish photothermal treatment. The Au/DOX-Lips showed an excellent antitumor effect, whose inhibition rate for tumor cells was up to 78.28%. In experiments on mice bearing tumors, the Au/DOX-Lips treated mice exhibited superior tumor suppression. This novel drug system provides huge potential for biomedical application.


Assuntos
Doxorrubicina/administração & dosagem , Ouro/administração & dosagem , Hipertermia Induzida/métodos , Neoplasias Experimentais/terapia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Doxorrubicina/farmacologia , Ouro/farmacologia , Células HeLa , Humanos , Lipossomos/química , Nanopartículas Metálicas/química , Camundongos , Fotoquimioterapia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Nanomedicine ; 13(6): 1891-1900, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28363771

RESUMO

A novel synthesis approach is first developed to fabricate a multifunctional smart nanodrug delivery system: gold nanoshell-coated betulinic acid liposomes (AuNS-BA-Lips) mediated by a glutathione. The AuNS-BA-Lips exhibited good size distribution (149.4±2.4nm), preferable photothermal conversion ability and synergistic chemo-photothermal therapy. Additionally, the absorption wavelength of AuNS-BA-Lips showed a significantly red-shifted to near infrared (NIR) region, which can strongly absorbed NIR laser and efficiently convert it into localized heat, thus providing controlled drug release and antitumor thermotherapy. Moreover, the nanocarriers excited by NIR light significantly promoted cell uptake compared to those without irradiation, resulting in an enhanced intracellular drug accumulation. Upon NIR irradiation, the AuNS-BA-Lips showed highly efficient antitumor effects on tumor-bearing mice with an inhibition rate of 83.02%, thus demonstrating a remarkable synergistic therapeutic effect of chemotherapy and thermotherapy. Therefore, this work provides new insight into developing a multifunctional antitumor drug.


Assuntos
Tratamento Farmacológico/métodos , Ouro/química , Hipertermia Induzida/métodos , Lipossomos/química , Nanoconchas/uso terapêutico , Fototerapia/métodos , Triterpenos/uso terapêutico , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Terapia Combinada , Preparações de Ação Retardada , Modelos Animais de Doenças , Humanos , Raios Infravermelhos , Camundongos , Osteossarcoma/patologia , Osteossarcoma/terapia , Triterpenos Pentacíclicos , Células Tumorais Cultivadas , Ácido Betulínico
12.
Small ; 12(30): 4103-12, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27294601

RESUMO

Novel antitumor system based on the targeting photothermal and pH-responsive nanocarriers, gold nanoshells coated oleanolic acid liposomes mediating by chitosan (GNOLs), is designed and synthesized for the first time. The GNOLs present spherical and uniform size (172.03 nm) with zeta potential (20.7 ± 0.4 mV), which are more easily accumulated in tumor. Meanwhile, the GNOLs exhibit a slow and controlled release of oleanolic acid at pH 7.4, as well as a rapid release at pH 5.5, which is beneficial for tumor-targeting drug release. Under near infrared (NIR) irradiation, hyperthermia can be generated by activated gold nanoshells to perform photothermal therapy effect, which triggers drug release from the carriers by activating the gel to liquid crystalline phase transition of the liposomes. Moreover, the NIR assisting drug release can be easily and selectively activated locally due to the spatially and real-timely controllable property of light. The experimental results also verify that the GNOLs with NIR irradiation achieve more ideal antitumor effects than other oleanolic acid formulations in vitro and in vivo. Hence, the drug delivery system exhibits a great potential in chemo-photothermal antitumor therapy.


Assuntos
Antineoplásicos/química , Quitosana/química , Ouro/química , Hipertermia Induzida/métodos , Lipossomos/química , Nanoconchas/análise , Ácido Oleanólico/química , Animais , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Feminino , Concentração de Íons de Hidrogênio , Camundongos , Ácido Oleanólico/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Small ; 12(30): 4102, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27492497

RESUMO

Gold nanoshell coated oleanolic acid liposomes mediating by chitosan (GNOLs), are designed and successfully synthesized for the first time by D. Gao and co-workers on page number 4103. An excellent near infrared (NIR) photothermal effect, pH-responsive drug controlled release and tumor targeting properties are demonstrated. By combining NIR photothermal therapy and chemotherapy, the smart drug delivery system exhibits a superior antitumor property in vitro and in vivo.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Ouro/química , Hipertermia Induzida/métodos , Lipossomos/química , Nanoconchas/química , Fototerapia/métodos , Animais , Linhagem Celular Tumoral , Terapia Combinada/métodos , Doxorrubicina/administração & dosagem , Humanos
14.
Nanomedicine ; 12(7): 2019-2029, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27247188

RESUMO

In the study, a new photoresponsive nano drug delivery system was developed by encapsulating indocyanine green into liposomes (ICG-liposomal wedelolactone), which could improve the water solubility and bioavailability of wedelolactone. The hyperthermia, produced by ICG under near-infrared (NIR) light irradiation, promoted wedelolactone release rapidly from the carriers. The release amount of ICG-liposomal wedelolactone under NIR irradiation reached up to 96.74% over 8h, achieving the drug of on-demand release. Moreover, the growth of HepG2 cells was obviously inhibited by ICG-liposomal wedelolactone under NIR, and the early apoptotic rate of HepG2 cells was 33.74%. The tumor inhibition rate was 81% in the mice bearing tumor treated with the drug system. The results proved that ICG-liposomal wedelolactone, as a novel drug delivery system to co-delivery chemotherapeutic agents and photothermal agents, achieved synergetic effect of chemotherapy and photothermotherapy, which will have an enormous potential in future cancer therapy.


Assuntos
Liberação Controlada de Fármacos , Hipertermia Induzida , Verde de Indocianina/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Humanos , Lipossomos , Camundongos
15.
J Colloid Interface Sci ; 670: 297-310, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763026

RESUMO

Fenton/Fenton-like reaction induced chemical dynamic therapy (CDT) has been widely recognized in tumor therapy. Due to the low efficiency of conversion from high-valent metal ions (M(n+1)+) to low-valent ions (Mn+) in the Fenton/Fenton-like catalytic process, enhancing the conversion efficiency safely and effectively would create a great opportunity for the clinical application of CDT. In the study, a universal nanoreactor (NR) consisting of liposome (Lip), tumor cell membrane (CM), and bis(2,4,5-trichloro-6-carboxyphenyl) oxalate (CPPO) is developed to tackle this challenge. The CPPO was first discovered to decompose under weak acidity and H2O2 conditions to generate carboxylic acids (R'COOH) and alcohols (R'OH) with reducibility, which will reduce M(n+1)+ to Mn+ and magnify the effect of CDT. Furthermore, glucose oxidase (GOx) was introduced to decompose glucose in tumor and generate H2O2 and glucose acid, which promote the degradation of CPPO, further strengthening the efficiency of CDT, leading to a butterfly effect. This demonstrated that the butterfly effect triggered by NR and GOx encourages Fenton/Fenton-like reactions of Fe3O4 and MoS2, thereby enhancing the tumor inhibition effect. The strategy of combining GOx and CPPO to strengthen the Fenton/Fenton-like reaction is a universal strategy, which provides a new and interesting perspective for CPPO in the application of CDT, reflecting the exquisite integration of Fenton chemistry and catalytic medicine.


Assuntos
Peróxido de Hidrogênio , Peróxido de Hidrogênio/química , Humanos , Ferro/química , Lipossomos/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Animais , Propriedades de Superfície , Antineoplásicos/química , Antineoplásicos/farmacologia , Oxalatos/química , Camundongos , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos
16.
Adv Healthc Mater ; : e2401741, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113330

RESUMO

High level of C (ROS) within the tumor microenvironment (TME) not only damage tumor cells but also diminish the efficacy of immunogenic cell death (ICD) and the activity of tumor-infiltrating T lymphocytes, thereby limiting the effectiveness of immunotherapy. Therefore, precise modulation of ROS level is crucial to effectively eliminate tumor cells and activate ICD-induced immunotherapy. Here, an intelligent yolk shell nanoplatform (SPCCM) that features calcium carbonate shells capable of decomposing under acidic TME conditions, thereby releasing the natural antioxidant proanthocyanidins (PAs) and the photosensitizer Ce6 is designed. PAs scavenge ROS within tumors, extending the survival time of T lymphocytes, while Ce6, as an ICD inducer, generates high ROS concentrations upon laser irradiation, thus reaching the toxic threshold within tumor cells and inducing apoptosis. The resulting apoptotic cells serve as tumor-associated antigens, promoting dendritic cells (DCs) maturation, and activating ICD. By effectively neutralizing ROS in the TME, PAs sustainably reduce ROS level, thereby enhancing DCs activation and restoring antitumor immune cell activity suppressed by ROS (resulting in an eightfold increase in DCs activation). This study demonstrates effective synergistic effects between photodynamic therapy and immunotherapy by precisely modulating ROS level.

17.
ACS Nano ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330150

RESUMO

The practical efficacy of nanomedicines for treating solid tumors is frequently low, predominantly due to the elevated interstitial pressure within such tumors that obstructs the penetration of nanomedicines. This increased interstitial pressure originates from both liquid and solid stresses related to an undeveloped vascular network and excessive fibroblast proliferation. To specifically resolve the penetration issues of nanomedicines for tumor treatment, this study introduces a holistic "dual-faceted" approach. A treatment platform predicated on the WS2/Pt Schottky heterojunction was adopted, and flexocatalysis technology was used to disintegrate tumor interstitial fluids, thus producing oxygen and reactive oxygen species and effectively mitigating the interstitial fluid pressure. The chemotherapeutic agent curcumin was incorporated to further suppress the activity of cancer-associated fibroblasts, minimize collagen deposition in the extracellular matrix, and alleviate solid stress. Nanomedicines achieve homologous targeting by enveloping the tumor cell membrane. It was found that this multidimensional strategy not only alleviated the high-pressure milieu of the tumor interstitium─which enhanced the efficiency of nanomedicine delivery─but also triggered tumor cell apoptosis via the generated reactive oxygen species and modulated the tumor microenvironment. This, in turn, amplified immune responses, substantially optimizing the therapeutic impacts of nanomedicines.

18.
J Colloid Interface Sci ; 663: 1064-1073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458046

RESUMO

Doxorubicin (DOX) is widely used in clinic as a broad-spectrum chemotherapy drug, which can enhance the efficacy of chemodynamic therapy (CDT) by interfering tumor-related metabolize to increase H2O2 content. However, DOX can induce serious cardiomyopathy (DIC) due to its oxidative stress in cardiomyocytes. Eliminating oxidative stress would create a significant opportunity for the clinical application of DOX combined with CDT. To address this issue, we introduced sodium ascorbate (AscNa), the main reason is that AscNa can be catalyzed to produce H2O2 by the abundant Fe3+ in the tumor site, thereby enhancing CDT. While the content of Fe3+ in heart tissue is relatively low, so the oxidation of AscNa had tumor specificity. Meanwhile, due to its inherent reducing properties, AscNa could also eliminate the oxidative stress generated by DOX, preventing cardiotoxicity. Due to the differences between myocardial tissue and tumor microenvironment, a novel nanomedicine was designed. MoS2 was employed as a carrier and CDT catalyst, loaded with DOX and AscNa, coating with homologous tumor cell membrane to construct an acid-responsive nanomedicine MoS2-DOX/AscNa@M (MDA@M). In tumor cells, AscNa enhances the synergistic therapy of DOX and MoS2. In cardiomyocytes, AscNa could effectively reduce the cardiomyopathy induced by DOX. Overall, this study enhanced the clinical potential of chemotherapy synergistic CDT.


Assuntos
Cardiomiopatias , Neoplasias , Humanos , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Nanomedicina , Peróxido de Hidrogênio/metabolismo , Molibdênio/metabolismo , Doxorrubicina/farmacologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/patologia , Ácido Ascórbico/farmacologia , Linhagem Celular Tumoral , Neoplasias/metabolismo , Microambiente Tumoral
19.
Adv Healthc Mater ; : e2400596, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38932657

RESUMO

In oncological nanomedicine, overcoming the dual-phase high interstitial pressure in the tumor microenvironment is pivotal for enhancing the penetration and efficacy of nanotherapeutics. The elevated tumor interstitial solid pressure (TISP) is largely attributed to the overaccumulation of collagen in the extracellular matrix, while the increased tumor interstitial fluid pressure (TIFP) stems from the accumulation of fluid due to the aberrant vascular architecture. In this context, metal-organic frameworks (MOFs) with catalytic efficiency have shown potential in degrading tumor interstitial components, thereby reducing interstitial pressure. However, the potential biotoxicity of the organic components of MOFs limits their clinical translation. To circumvent this, a MOF-like photocatalytic nanozyme, RPC@M, using naturally derived cobalt phytate (CoPA) and resveratrol (Res) is developed. This nanozyme not only facilitates the decomposition of water in the tumor interstitium under photoactivation to reduce TIFP, but also generates an abundance of reactive oxygen species through its peroxidase-like activity to exert cytotoxic effects on tumor cells. Moreover, Res contributes to the reduction of collagen deposition, thereby lowering TISP. The concurrent diminution of both TISP and TIFP by RPC@M leads to enhanced tumor penetration and potent antitumor activity, presenting an innovative approach in constructing tumor therapeutic nanozymes from natural products.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38016813

RESUMO

In nanocatalytic medicine, drugs can be transformed into toxic components through highly selective and highly specific catalytic reactions in the tumor microenvironment, avoiding toxic side effects on normal tissues. Due to the coexistence of Ce3+ and Ce4+, CeO2 is endowed with dual nanozyme activities. Herein, CeO2 nanoparticles served as templates to construct a biomimetic nanodrug delivery system (C/CeO2@M) by electrostatic adsorption of carbon quantum dots (CQDs) and coating a homologous tumor cytomembrane. After homologous targeting to tumors, the CQDs emitted 350-600 nm light under 660 nm laser irradiation by upconversion luminescence, which caused a CeO2-mediated photocatalytic reaction to generate reactive oxygen species. The catalase-like activity of CeO2-enabled converting excess H2O2 to O2, which not only alleviated tumor hypoxia and promoted intratumor drug delivery but also provided substrates for subsequent catalytic reactions. Meanwhile, the phosphatase activity of CeO2 could consume adenosine triphosphate (ATP) to block the energy supply for tumor cells, thus limiting cell proliferation and metastasis. The strategy of energy restriction and photocatalysis of dual nanozyme stimulation offers great potentials in enhancing drug penetration and eradicating solid tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA