Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Brain Behav Immun ; 120: 499-512, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944162

RESUMO

The gut microbiota and neurological development of neonatal mice are susceptible to environmental factors that may lead to altered behavior into adulthood. However, the role that changed gut microbiota and neurodevelopment early in life play in this needs to be clarified. In this study, by modeling early-life environmental changes by cross-fostering BALB/c mice, we revealed the effects of the environment during the critical period of postnatal development on adult social behavior and their relationship with the gut microbiota and the nervous system. The neural projections exist between the ascending colon and oxytocin neurons in the paraventricular nuclei (PVN), peripheral oxytocin levels and PVN neuron numbers decreased after cross-fostering, and sex-specific alteration in gut microbiota and its metabolites may be involved in social impairments and immune imbalances brought by cross-fostering via the gut-brain axis. Our findings also suggest that social cognitive impairment may result from a combination of PVN oxytocinergic neurons, gut microbiota, and metabolites.

2.
Cells Tissues Organs ; 207(3-4): 165-176, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31726456

RESUMO

OBJECTIVE: To elaborate the mechanism of miR-150 in the regulation of the NF-κB signal pathway in intervertebral disc degeneration (IDD) by targeting P2X7. METHODS: The degenerative and normal intervertebral disc tissues were collected to detect the expressions of miR-150 and P2X7. Nucleus pulposus cells were transfected and divided into different groups. Cell apoptosis was determined by flow cytometry and TUNEL staining. The expressions of IL-6, TNF-α, MMP-3, MMP-13, Cox-2, iNOS, collagen II and aggrecan, as well as NF-κB-associated proteins were measured by qRT-PCR and Western blotting. Furthermore, IDD rat models were established to validate the role of miR-150 in vivo. RESULTS: miR-150 was down-regulated but P2X7 was up-regulated in the degenerative intravertebral disc tissues. The apoptosis of nucleus pulposus cells in the IL-1ß-induced group with the transfection of miR-150 mimic and siP2X7 was significantly decreased, with reduced levels of IL-6, TNF-α, MMP-3, MMP-13, Cox-2 and iNOS, increased levels of collagen II and aggrecan, as well as decreased P2X7, p-p65/p65 and cleaved caspase-3. However, the above factors showed an opposite tendency after treatment with miR-150 inhibitor. Furthermore, the P2X7 siRNA transfection could reverse the effects caused by miR-150 inhibitor. Simultaneously, pcDNA P2X7 transfection also inhibited the function of miR-150 mimic in IL-1ß-induced nucleus pulposus cells. In vivoexperiments further verified the protective role of miR-150 in IDD rats. CONCLUSION: miR-150 may alleviate the degeneration of the intervertebral disc partially since it could restrict the NF-κB pathway by targeting P2X7, and thereby inhibiting IL-1ß-induced matrix catabolism, inflammatory responses and apoptosis of the nucleus pulposus cells.


Assuntos
Degeneração do Disco Intervertebral/genética , MicroRNAs/genética , NF-kappa B/genética , Receptores Purinérgicos P2X7/genética , Adulto , Animais , Células Cultivadas , Regulação para Baixo , Feminino , Humanos , Degeneração do Disco Intervertebral/patologia , Masculino , Pessoa de Meia-Idade , Ratos , Transdução de Sinais , Regulação para Cima
3.
J Nutr Biochem ; 125: 109570, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218348

RESUMO

High salt diet (HSD) is a risk factor of hypertension and cardiovascular disease. Although clinical data do not clearly indicate the relationship between HSD and the prevalence of Alzheimer's disease (AD), animal experiments have shown that HSD can cause hyperphosphorylation of tau protein and cognition impairment. However, whether HSD can accelerate the progression of AD by damaging the function of neurovascular unit (NVU) in the brain is unclear. Here, we fed APP/PS1 mice (an AD model) or wild-type mice with HSD and found that the chronic HSD feeding increased the activity of enzymes related to tau phosphorylation, which led to tau hyperphosphorylation in the brain. HSD also aggravated the deposition of Aß42 in hippocampus and cortex in the APP/PS1 mice but not in the wild-type mice. Simultaneously, HSD caused the microglia proliferation, low expression of Aqp-4, and high expression of CD31 in the wild-type mice, which were accompanied with the loss of pericytes (PCs) and increase in blood brain barrier (BBB) permeability. As a result, wild-type mice fed with HSD performed poorly in Morris Water Maze and object recognition test. In the APP/PS1 mice, HSD feeding for 8 months worsen the cognition and accompanied the loss of PCs, the activation of glia, the increase in BBB permeability, and the acceleration of calcification in the brain. Our data suggested that HSD feeding induced the AD-like pathology in wild-type mice and aggravated the development of AD-like pathology in APP/PS1 mice, which implicated the tau hyperphosphorylation and NVU dysfunction.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Proteínas tau/metabolismo , Dieta , Cognição , Cloreto de Sódio na Dieta/efeitos adversos , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
4.
Neuropeptides ; 96: 102268, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35841876

RESUMO

According to many in the field,the prevalence of Alzheimer's disease (AD) in type II diabetes (T2DM) populations is considerably higher than that in the normal population. Human islet amyloid polypeptide (hIAPP) is considered to be a common risk factor for T2DM and AD. Preliminary observations around T2DM animal model show that the decrease of adult neural stem cells (NSCs) in the subventricular zone (SVZ) is accompanied by olfactory dysfunction. Furthermore, impaired olfactory function could serve as to an early predictor of neurodegeneration,which is associated with cognitive impairment. However, the synergistic effects between hIAPP and amyloid-beta (Aß) 1-42 in the brain and the neurodegeneration remains to be further clarified. In this study, olfactory capacity, synaptic density, status of NSC in SVZ, and status of newborn neurons in olfactory bulb (OB) were assessed 6 months after stereotactic injection of oligomer Aß1-42 into the dens gyrus (DG) of hIAPP-/+ mice or wild-type homogenous mice. Our results set out that Aß42 and amylin co-localized into OB and raised Aß42 deposition in hIAPP-/+ mice compared with wild-type brood mice. In addition, 6 months after injection of Aß1-42 in hIAPP-/+ mice, these mice showed increased olfactory dysfunction, significant loss of synapses, depletion of NSC in SVZ, and impaired cell renewal in OB. Our present study suggested that the synergistic effects between hIAPP and Aß1-42 impairs olfactory function and was associated with decreased neurogenesis in adults with SVZ.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Transtornos do Olfato , Animais , Camundongos , Humanos , Ventrículos Laterais , Neurogênese , Bulbo Olfatório
5.
Immunol Lett ; 231: 49-60, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33428991

RESUMO

Changes in the thymus and potential mechanisms underlying the pathogenesis in pristane-induced lupus (PIL) mice are poorly understood. This study aimed to systematically and specifically examine changes in the thymus and the potential mechanisms responsible for immunological abnormalities in PIL mice. The results showed that PIL mice exhibit serious thymic hyperplasia, an elevated thymus index, a damaged histopathological structure and increased thymocyte apoptosis. We found that thymic T cell differentiation was impaired as the CD4+ CD8+ double-positive (DP) thymocyte frequency significantly decreased, becoming almost absent at 28 weeks after induction, while CD4 CD8- double-negative (DN) thymocytes and CD4+ CD8- single-positive (CD4+ SP) and CD4 CD8+ single-positive (CD8+ SP) cells were increased. This phenomenon might be explained by an inhibition of the DN-to-DP-cell transition and stimulation of DP cell conversion into CD4+ /CD8+ SP thymocytes. Moreover, we discovered a dramatic and abnormal increase in thymic B cells, that was associated with CD19, Irf8, Ebf1, Pax5, Irf4, Blk, CXCL13, CXCR5, CD79a, CD79b, Lyn, Syk, Btk, and BLNK gene accumulation, which exhibited positive interactions. We further verified that the mRNA expression of these genes was significantly upregulated and consistent with the RNA-seq results. These results suggest a role of these genes in the increase of B cells in the thymus of PIL mice. In summary, our results showed the changes in the thymus in PIL and elucidated the immunologic abnormalities of increased B cells, potentially providing insight into the associated molecular mechanisms and facilitating further research.


Assuntos
Linfócitos B/imunologia , Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Timócitos/imunologia , Timócitos/metabolismo , Animais , Apoptose , Linfócitos B/metabolismo , Biomarcadores , Diferenciação Celular/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Imunofenotipagem , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Ativação Linfocitária/genética , Camundongos , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos T/metabolismo , Terpenos/efeitos adversos , Timo/imunologia , Timo/metabolismo , Timo/patologia
6.
Stem Cell Res Ther ; 11(1): 217, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503644

RESUMO

BACKGROUND AND AIMS: A marked egg-induced CD4+ T cell programmed inflammation and subsequent hepatic fibrosis characterize the pathogenesis of schistosomiasis. Mesenchymal stem cell (MSC) has been extensively studied for the treatment of schistosomiasis. However, the mechanism by which MSCs modulate the pathogenesis of schistosomiasis has not been clarified. Furthermore, the local inflammatory milieu may greatly influence the immunoregulatory properties of MSCs, and our early experiments demonstrated that Toll-like receptor (TLR)2/TLR4 agonist effected immune modulation of MSC. Here, we further investigated their modulation on the pathogenesis of schistosomiasis. METHODS: Adult BALB/c male mice were percutaneously infected with 16 ± 2 pairs S. japonicum cercariae and received intravenously pretreated MSC at 1 week and 3 weeks post-infection, respectively. At 8 weeks post-infection, effects of MSC on liver histology were shown by hematoxylin and eosin (H&E) staining and Masson staining and quantitatively compared by the hepatic hydroxyproline content; α-smooth muscle actin (α-SMA), collagen type I(Col-1), transforming growth factor ß (TGF-ß), and tumor necrosis factor-α (TNF-α) gene expression in the liver were assessed by semi-quantitative polymerase chain reaction (PCR); the Th1/Th2 dominance among different groups was compared by analyzing CD4+ interferon-γ (IFN-γ)+ and CD4+interleukin-4 (IL-4)+T cells in the liver by flow cytometry and serum level of IFN-γ and IL-5 using enzyme-linked immunosorbent assay (ELISA). Effects of different kinds of MSC were further evaluated in vitro by the coculture system. RESULTS: Results showed TLR4- and IFN-γ-activated MSC alleviated liver fibrosis in infected mice, without a significant increase of mortality, and unpretreated MSC showed no clear improvement; however, TLR2- and IFN-γ-activated MSC displayed aggravated immunopathology. In accord with the pathological results, TLR4- and IFN-γ-activated MSC groups showed moderate enhancement of Th1 response in vitro and clear Th1 dominance in vivo without leading to extreme inflammation, whereas TLR2- and IFN-γ-activated MSC not only induced Th1 response, but also triggered excessive inflammation as evidenced by atrophy of the thymus and higher TNF level in the coculture system. CONCLUSIONS: This study demonstrates that TLR4 combined with IFN-γ can activate the MSC group with positive effects on the pathology of schistosomiasis by modulating Th subsets at some degree. This result suggests that when MSC is being used to treat different immuno-disturbance complications, subtle pretreatment methods should be seriously considered.


Assuntos
Células-Tronco Mesenquimais , Esquistossomose Japônica , Esquistossomose , Animais , Interferon gama/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA