Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.611
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Genet ; 57: 201-222, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37562413

RESUMO

Despite accumulating evidence implicating noncoding variants in human diseases, unraveling their functionality remains a significant challenge. Systematic annotations of the regulatory landscape and the growth of sequence variant data sets have fueled the development of tools and methods to identify causal noncoding variants and evaluate their regulatory effects. Here, we review the latest advances in the field and discuss potential future research avenues to gain a more in-depth understanding of noncoding regulatory variants.


Assuntos
Predisposição Genética para Doença , Variação Genética , Humanos , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único/genética
2.
Cell ; 156(1-2): 304-16, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439384

RESUMO

A clear relationship exists between visceral obesity and type 2 diabetes, whereas subcutaneous obesity is comparatively benign. Here, we show that adipocyte-specific deletion of the coregulatory protein PRDM16 caused minimal effects on classical brown fat but markedly inhibited beige adipocyte function in subcutaneous fat following cold exposure or ß3-agonist treatment. These animals developed obesity on a high-fat diet, with severe insulin resistance and hepatic steatosis. They also showed altered fat distribution with markedly increased subcutaneous adiposity. Subcutaneous adipose tissue in mutant mice acquired many key properties of visceral fat, including decreased thermogenic and increased inflammatory gene expression and increased macrophage accumulation. Transplantation of subcutaneous fat into mice with diet-induced obesity showed a loss of metabolic benefit when tissues were derived from PRDM16 mutant animals. These findings indicate that PRDM16 and beige adipocytes are required for the "browning" of white fat and the healthful effects of subcutaneous adipose tissue.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Obesidade/metabolismo , Fatores de Transcrição/metabolismo , Adipócitos/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Dieta Hiperlipídica , Resistência à Insulina , Camundongos , Camundongos Knockout , Fatores de Transcrição/genética
3.
PLoS Biol ; 22(3): e3002330, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442096

RESUMO

Cilia play critical roles in cell signal transduction and organ development. Defects in cilia function result in a variety of genetic disorders. Cep290 is an evolutionarily conserved ciliopathy protein that bridges the ciliary membrane and axoneme at the basal body (BB) and plays critical roles in the initiation of ciliogenesis and TZ assembly. How Cep290 is maintained at BB and whether axonemal and ciliary membrane localized cues converge to determine the localization of Cep290 remain unknown. Here, we report that the Cep131-Cep162 module near the axoneme and the Cby-Fam92 module close to the membrane synergistically control the BB localization of Cep290 and the subsequent initiation of ciliogenesis in Drosophila. Concurrent deletion of any protein of the Cep131-Cep162 module and of the Cby-Fam92 module leads to a complete loss of Cep290 from BB and blocks ciliogenesis at its initiation stage. Our results reveal that the first step of ciliogenesis strictly depends on cooperative and retroactive interactions between Cep131-Cep162, Cby-Fam92 and Cep290, which may contribute to the complex pathogenesis of Cep290-related ciliopathies.


Assuntos
Corpos Basais , Cognição , Animais , Sinais (Psicologia) , Axonema , Cílios/genética , Drosophila/genética
4.
Proc Natl Acad Sci U S A ; 121(2): e2315898120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165930

RESUMO

Protection against endothelial damage is recognized as a frontline approach to preventing the progression of cytokine release syndrome (CRS). Accumulating evidence has demonstrated that interleukin-6 (IL-6) promotes vascular endothelial damage during CRS, although the molecular mechanisms remain to be fully elucidated. Targeting IL-6 receptor signaling delays CRS progression; however, current options are limited by persistent inhibition of the immune system. Here, we show that endothelial IL-6 trans-signaling promoted vascular damage and inflammatory responses via hypoxia-inducible factor-1α (HIF1α)-induced glycolysis. Using pharmacological inhibitors targeting HIF1α activity or mice with the genetic ablation of gp130 in the endothelium, we found that inhibition of IL-6R (IL-6 receptor)-HIF1α signaling in endothelial cells protected against vascular injury caused by septic damage and provided survival benefit in a mouse model of sepsis. In addition, we developed a short half-life anti-IL-6R antibody (silent anti-IL-6R antibody) and found that it was highly effective at augmenting survival for sepsis and severe burn by strengthening the endothelial glycocalyx and reducing cytokine storm, and vascular leakage. Together, our data advance the role of endothelial IL-6 trans-signaling in the progression of CRS and indicate a potential therapeutic approach for burns and sepsis.


Assuntos
Receptor gp130 de Citocina , Subunidade alfa do Fator 1 Induzível por Hipóxia , Interleucina-6 , Receptores de Interleucina-6 , Sepse , Animais , Camundongos , Receptor gp130 de Citocina/genética , Síndrome da Liberação de Citocina , Células Endoteliais , Receptores de Interleucina-6/genética , Sepse/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
5.
Genes Dev ; 32(13-14): 929-943, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950492

RESUMO

While a mutation in C9ORF72 is the most common genetic contributor to amyotrophic lateral sclerosis (ALS), much remains to be learned concerning the function of the protein normally encoded at this locus. To elaborate further on functions for C9ORF72, we used quantitative mass spectrometry-based proteomics to identify interacting proteins in motor neurons and found that its long isoform complexes with and stabilizes SMCR8, which further enables interaction with WDR41. To study the organismal and cellular functions for this tripartite complex, we generated Smcr8 loss-of-function mutant mice and found that they developed phenotypes also observed in C9orf72 loss-of-function animals, including autoimmunity. Along with a loss of tolerance for many nervous system autoantigens, we found increased lysosomal exocytosis in Smcr8 mutant macrophages. In addition to elevated surface Lamp1 (lysosome-associated membrane protein 1) expression, we also observed enhanced secretion of lysosomal components-phenotypes that we subsequently observed in C9orf72 loss-of-function macrophages. Overall, our findings demonstrate that C9ORF72 and SMCR8 have interdependent functions in suppressing autoimmunity as well as negatively regulating lysosomal exocytosis-processes of potential importance to ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Autoimunidade/genética , Proteínas de Transporte/metabolismo , Exocitose/genética , Lisossomos/metabolismo , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteínas de Transporte/genética , Regulação da Expressão Gênica/genética , Humanos , Linfonodos/patologia , Proteína 1 de Membrana Associada ao Lisossomo/genética , Macrófagos/patologia , Camundongos , Camundongos Knockout , Mutação , Isoformas de Proteínas , Estabilidade Proteica , Esplenomegalia/genética
6.
Genome Res ; 32(1): 135-149, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34963661

RESUMO

Rapid accumulation of cancer genomic data has led to the identification of an increasing number of mutational hotspots with uncharacterized significance. Here we present a biologically informed computational framework that characterizes the functional relevance of all 1107 published mutational hotspots identified in approximately 25,000 tumor samples across 41 cancer types in the context of a human 3D interactome network, in which the interface of each interaction is mapped at residue resolution. Hotspots reside in network hub proteins and are enriched on protein interaction interfaces, suggesting that alteration of specific protein-protein interactions is critical for the oncogenicity of many hotspot mutations. Our framework enables, for the first time, systematic identification of specific protein interactions affected by hotspot mutations at the full proteome scale. Furthermore, by constructing a hotspot-affected network that connects all hotspot-affected interactions throughout the whole-human interactome, we uncover genome-wide relationships among hotspots and implicate novel cancer proteins that do not harbor hotspot mutations themselves. Moreover, applying our network-based framework to specific cancer types identifies clinically significant hotspots that can be used for prognosis and therapy targets. Overall, we show that our framework bridges the gap between the statistical significance of mutational hotspots and their biological and clinical significance in human cancers.


Assuntos
Neoplasias , Proteoma , Genômica , Humanos , Mutação , Neoplasias/genética , Proteoma/química , Proteoma/genética
7.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36920063

RESUMO

Gene essentiality is defined as the extent to which a gene is required for the survival and reproductive success of a living system. It can vary between genetic backgrounds and environments. Essential protein coding genes have been well studied. However, the essentiality of non-coding regions is rarely reported. Most regions of human genome do not encode proteins. Determining essentialities of non-coding genes is demanded. We developed iEssLnc models, which can assign essentiality scores to lncRNA genes. As far as we know, this is the first direct quantitative estimation to the essentiality of lncRNA genes. By taking the advantage of graph neural network with meta-path-guided random walks on the lncRNA-protein interaction network, iEssLnc models can perform genome-wide screenings for essential lncRNA genes in a quantitative manner. We carried out validations and whole genome screening in the context of human cancer cell-lines and mouse genome. In comparisons to other methods, which are transferred from protein-coding genes, iEssLnc achieved better performances. Enrichment analysis indicated that iEssLnc essentiality scores clustered essential lncRNA genes with high ranks. With the screening results of iEssLnc models, we estimated the number of essential lncRNA genes in human and mouse. We performed functional analysis to find that essential lncRNA genes interact with microRNAs and cytoskeletal proteins significantly, which may be of interest in experimental life sciences. All datasets and codes of iEssLnc models have been deposited in GitHub (https://github.com/yyZhang14/iEssLnc).


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Animais , Camundongos , Mapas de Interação de Proteínas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/metabolismo , Redes Neurais de Computação
8.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36562715

RESUMO

As one of the most vital methods in drug development, drug repositioning emphasizes further analysis and research of approved drugs based on the existing large amount of clinical and experimental data to identify new indications of drugs. However, the existing drug repositioning methods didn't achieve enough prediction performance, and these methods do not consider the effectiveness information of drugs, which make it difficult to obtain reliable and valuable results. In this study, we proposed a drug repositioning framework termed DRONet, which make full use of effectiveness comparative relationships (ECR) among drugs as prior information by combining network embedding and ranking learning. We utilized network embedding methods to learn the deep features of drugs from a heterogeneous drug-disease network, and constructed a high-quality drug-indication data set including effectiveness-based drug contrast relationships. The embedding features and ECR of drugs are combined effectively through a designed ranking learning model to prioritize candidate drugs. Comprehensive experiments show that DRONet has higher prediction accuracy (improving 87.4% on Hit@1 and 37.9% on mean reciprocal rank) than state of the art. The case analysis also demonstrates high reliability of predicted results, which has potential to guide clinical drug development.


Assuntos
Biologia Computacional , Reposicionamento de Medicamentos , Biologia Computacional/métodos , Reposicionamento de Medicamentos/métodos , Reprodutibilidade dos Testes , Confiabilidade dos Dados , Algoritmos
9.
Plant Physiol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630866

RESUMO

Ginkgo (Ginkgo biloba L.) is one of the earliest extant species in seed plant phylogeny. Embryo development patterns can provide fundamental evidence for the origin, evolution, and adaptation of seeds. However, the architectural and morphological dynamics during embryogenesis in Ginkgo biloba (G. biloba) remain elusive. Herein, we obtained over 2200 visual slices from three stages of embryo development using micro-computed tomography imaging with improved staining methods. Based on 3D spatio-temporal pattern analysis, we found that a shoot apical meristem with seven highly differentiated leaf primordia, including apical and axillary leaf buds, is present in mature Ginkgo embryos. 3D rendering from the front, top, and side views showed two separate transport systems of tracheids located in the hypocotyl and cotyledon, representing a unique pattern of embryogenesis. Furthermore, the morphological dynamic analysis of secretory cavities indicated their strong association with cotyledons during development. In addition, we identified genes GbLBD25a (lateral organ boundaries domain 25a), GbCESA2a (cellulose synthase 2a), GbMYB74c (myeloblastosis 74c), GbPIN2 (PIN-FORMED 2) associated with vascular development regulation, and GbWRKY1 (WRKYGOK 1), GbbHLH12a (basic helix-loop-helix 12a), GbJAZ4 (jasmonate zim-domain 4) potentially involved in the formation of secretory cavities. Moreover, we found that flavonoid accumulation in mature embryos could enhance post-germinative growth and seedling establishment in harsh environments. Our 3D spatial reconstruction technique combined with multi-omics analysis opens avenues for investigating developmental architecture and molecular mechanisms during embryogenesis and lays the foundation for evolutionary studies of embryo development and maturation.

10.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37955636

RESUMO

Although proline-rich transmembrane protein 2 is the primary causative gene of paroxysmal kinesigenic dyskinesia, its effects on the brain structure of paroxysmal kinesigenic dyskinesia patients are not yet clear. Here, we explored the influence of proline-rich transmembrane protein 2 mutations on similarity-based gray matter morphological networks in individuals with paroxysmal kinesigenic dyskinesia. A total of 51 paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations, 55 paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, and 80 healthy controls participated in the study. We analyzed the structural connectome characteristics across groups by graph theory approaches. Relative to paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation and healthy controls, paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations exhibited a notable increase in characteristic path length and a reduction in both global and local efficiency. Relative to healthy controls, both patient groups showed reduced nodal metrics in right postcentral gyrus, right angular, and bilateral thalamus; Relative to healthy controls and paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations showed almost all reduced nodal centralities and structural connections in cortico-basal ganglia-thalamo-cortical circuit including bilateral supplementary motor area, bilateral pallidum, and right caudate nucleus. Finally, we used support vector machine by gray matter network matrices to classify paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations and paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, achieving an accuracy of 73%. These results show that proline-rich transmembrane protein 2 related gray matter network deficits may contribute to paroxysmal kinesigenic dyskinesia, offering new insights into its pathophysiological mechanisms.


Assuntos
Distonia , Substância Cinzenta , Humanos , Substância Cinzenta/diagnóstico por imagem , Mutação , Distonia/diagnóstico por imagem , Distonia/genética , Encéfalo/diagnóstico por imagem , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
11.
J Cell Mol Med ; 28(12): e18440, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890792

RESUMO

Hepatitis B virus (HBV) damages liver cells through abnormal immune responses. Mitochondrial metabolism is necessary for effector functions of white blood cells (WBCs). The aim was to investigate the altered counts and mitochondrial mass (MM) of WBCs by two novel indicators of mitochondrial mass, MM and percentage of low mitochondrial membrane potential, MMPlow%, due to chronic HBV infection. The counts of lymphocytes, neutrophils and monocytes in the HBV infection group were in decline, especially for lymphocyte (p = 0.034) and monocyte counts (p = 0.003). The degraded MM (p = 0.003) and MMPlow% (p = 0.002) of lymphocytes and MM (p = 0.005) of monocytes suggested mitochondrial dysfunction of WBCs. HBV DNA within WBCs showed an extensive effect on mitochondria metabolic potential of lymphocytes, neutrophils and monocytes indicated by MM; hepatitis B e antigen was associated with instant mitochondrial energy supply indicated by MMPlow% of neutrophils; hepatitis B surface antigen, antiviral therapy by nucleos(t)ide analogues and prolonged infection were also vital factors contributing to WBC alterations. Moreover, degraded neutrophils and monocytes could be used to monitor immune responses reflecting chronic liver fibrosis and inflammatory damage. In conclusion, MM combined with cell counts of WBCs could profoundly reflect WBC alterations for monitoring chronic HBV infection. Moreover, HBV DNA within WBCs may be a vital factor in injuring mitochondria metabolic potential.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Mitocôndrias , Humanos , Hepatite B Crônica/virologia , Hepatite B Crônica/patologia , Masculino , Feminino , Vírus da Hepatite B/patogenicidade , Adulto , Mitocôndrias/metabolismo , Pessoa de Meia-Idade , Contagem de Leucócitos , Leucócitos/metabolismo , DNA Viral/sangue , Potencial da Membrana Mitocondrial , Monócitos/metabolismo , Monócitos/imunologia , Monócitos/virologia , Monócitos/patologia , Neutrófilos/metabolismo , Neutrófilos/imunologia
12.
Plant J ; 116(3): 728-743, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37492018

RESUMO

Diurnal rhythms are known to regulate the expression of a large number of genes, coordinating plant growth and development with diel changes in light and temperature. However, the impact of RNA metabolism on rhythmic gene oscillations in plant is not yet fully understood. To address this question, we performed transcriptome and degradome profiling on tomato leaves at 6 time points during one 24 h cycle, using RNA-seq and genome-wide mapping of uncapped and cleavage transcripts (GMUCT). Time-series profiling of RNA-seq revealed 9342 diurnal-oscillated genes, which were enriched in various metabolic processes. To quantify the general level of RNA degradation for each gene, we utilized the Proportion Uncapped (PU) metric, which represents the GMUCT/RNA-seq ratio. Oscillated PU analysis revealed that 3885 genes were regulated by rhythmic RNA degradation. The RNA decay of these diurnal genes was highly coordinated with mRNA downregulation during oscillation, highlighting the critical role of internal transcription-degradation balance in rhythmic gene oscillation. Furthermore, we identified 2190 genes undergoing co-translational RNA decay (CTRD) with 5' phosphate read ends enriched at the boundary of ribosomes stalling at translational termination sites. Interestingly, diurnal-changed mRNAs with large amplitudes tended to be co-translationally decay, suggesting that CTRD contributed to the rapid turnover of diurnal mRNAs. Finally, we also identified several genes, whose miRNA cleavage efficiency oscillated in a diurnal manner. Taken together, these findings uncovered the vital functions of RNA metabolism, including rhythmic RNA degradation, CTRD, and miRNA cleavage, in modulating the diurnal mRNA oscillations during diel change at post-transcriptional level in tomato.


Assuntos
MicroRNAs , Solanum lycopersicum , Solanum lycopersicum/genética , Ritmo Circadiano/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma , MicroRNAs/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética
13.
Plant J ; 115(1): 37-51, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36970846

RESUMO

Pollen development is critical to plant reproduction, but the underlying regulatory molecular mechanisms have not been fully elucidated. The Arabidopsis (Arabidopsis thaliana) EFR3 OF PLANT 3 (EFOP3) and EFR3 OF PLANT 4 (EFOP4) genes encode members of the Armadillo (ARM) repeat superfamily that play key roles in pollen development. Herein, we demonstrate that EFOP3 and EFOP4 are co-expressed in pollen at anther stages 10-12, but loss-of-function of both EFOP3 and EFOP4 leads to male gametophyte sterility, irregular intine, and shriveled pollen grains at anther stage 12. We further established that full-length EFOP3 and EFOP4 specifically localize to the plasma membrane, and the integrity of these proteins is essential for pollen development. We observed uneven intine, less organized cellulose and reduced pectin content in mutant pollen compared with the wild-type. These, together with the misexpression of several genes related to cell wall metabolism in efop3-/- efop4+/- mutants, suggest that EFOP3 and EFOP4 may indirectly regulate the expression of these genes to affect intine formation, thus controlling Arabidopsis pollen fertility in a functionally redundant manner. Moreover, transcriptome analysis showed that the absence of EFOP3 and EFOP4 function affects multiple pollen development pathways. These results enhance our understanding of EFOPs proteins and their role in pollen development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pólen , Fertilidade , Reprodução/genética , Regulação da Expressão Gênica de Plantas
14.
BMC Plant Biol ; 24(1): 53, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38229011

RESUMO

BACKGROUND: Paclobutrazol is widely used in the agricultural field. This study investigated the effects of seed priming with different concentrations of paclobutrazol on seedling quality, 2-acetyl-1-pyrroline (2-AP, a key aroma component of fragrant rice) biosynthesis, and related physiological and biochemical indicators in fragrant rice seedlings. RESULTS: The experiment is being conducted at the College of Agriculture, South China Agricultural University. In the experiment, three concentrations of paclobutrazol (Pac 1: 20 mg·L-1; Pac 2: 40 mg·L-1; Pac 3: 80 mg·L-1) were used to initiate the treatment of fragrant rice seeds, while water treatment was used as a control (CK). The results showed that compared with CK, paclobutrazol treatment reduced plant height, increased stem diameter, and increased fresh and dry weight of aromatic rice seedlings. Moreover, paclobutrazol treatment also increased the seedlings' photosynthetic pigment content and net photosynthetic rate. CONCLUSIONS: This study demonstrates that paclobutrazol primarily increases the content of proline by reducing the content of glutamate and down-regulating the expression of P5CS2, thereby promoting the conversion of proline to the aromatic substance 2-AP. Under the appropriate concentration of paclobutrazol (40 mg·L-1~80 mg·L-1), the seedling quality, stress resistance, and aroma of fragrant rice can be improved.


Assuntos
Oryza , Plântula , Triazóis , Humanos , Plântula/metabolismo , Oryza/metabolismo , Odorantes , Sementes/metabolismo , Fotossíntese , Prolina/metabolismo
15.
Small ; : e2308352, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433397

RESUMO

Magnetic hydrogel actuators are developed by incorporating magnetic fillers into the hydrogel matrix. Regulating the distribution of these fillers is key to the exhibited functionalities but is still challenging. Here a facile way to spatially synthesize ferrosoferric oxide (Fe3 O4 ) microparticles in situ in a thermal-responsive hydrogel is reported. This method involves the photo-reduction of Fe3+ ions coordinated with carboxylate groups in polymer chains, and the hydrolytic reaction of the reduced Fe2+ ions with residual Fe3+ ions. By controlling the irradiation time and position, the concentration of Fe3 O4 microparticles can be spatially controlled, and the resulting Fe3 O4 pattern enables the hydrogel to exhibit complex locomotion driven by magnet, temperature, and NIR light. This method is convenient and extendable to other hydrogel systems to realize more complicated magneto-responsive functionalities.

16.
Small ; : e2401681, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923771

RESUMO

Perovskite is an emerging material with immense potential in the field of optoelectronics. 1D perovskite nanowires are crucial building blocks for the development of optoelectronic devices. However, producing perovskite nanowires with high quality and controlled alignment is challenging. In this study, the direct epitaxial growth of perovskite on oriented carbon nanotube (CNT) templates is presented through a chemical vapor deposition method. The deposition process of lead iodide and methylammonium iodide is systematically investigated, and a layer plus island growth mechanism is proposed to interpret the experimental observations. The aligned long CNTs serve as 1D templates and allow the growth of CNT@perovskite core-shell heterostructure with a high aspect ratio to withstand large deformation. The obtained 1D perovskite materials can be easily manipulated and transferred, enabling the facile preparation of microscale flexible devices. For proof of concept, a photodetector based on an individual CNT@methylammonium lead iodide heterostructure is fabricated. This work provides a new approach to prepare 1D hetero-nanostructure and may inspire the design of novel flexible nanophotodetectors.

17.
Small ; : e2310762, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366074

RESUMO

Responsive thermochromic fiber materials capable of miniaturization and integrating comfortably and compliantly onto the soft and dynamically deforming human body are promising materials for visualized personal health monitoring. However, their development is hindered by monotonous colors, low-contrast color changes, and poor reversibility. Herein, full-color "off-on" thermochromic fluorescent fibers are prepared based on self-crystallinity phase change and Förster resonance energy transfer for long-term and passive body-temperature monitoring, especially for various personalized customization purposes. The off-on switching luminescence characteristic is derived from the reversible conversion of the dispersion state and fluorescent emission by fluorophores and quencher molecules, which are embedded in the matrix of a phase-change material, during the crystallizing/melting processes. The achievement of full-color fluorescence is attributed to the large modulation range of fluorescence colors according to primary color additive theory. These thermochromic fluorescent fibers exhibit good mechanical properties, fluorescent emission contrast, and reversibility, showing their great potential in flexible smart display devices. Moreover, the response temperature of the thermochromic fibers is controllable by adjusting the phase-change material, enabling body-temperature-triggered luminescence; this property highlights their potential for human body-temperature monitoring and personalized customization. This work presents a new strategy for designing and exploring flexible sensors with higher comprehensive performances.

18.
J Neurosci Res ; 102(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284840

RESUMO

The trajectory of voxel-mirrored homotopic connectivity (VMHC) after medical treatment in obsessive-compulsive disorder (OCD) and its value in prediction of treatment response remains unclear. This study aimed to investigate the pathophysiological mechanism of OCD, as well as biomarkers for prediction of pharmacological efficacy. Medication-free patients with OCD and healthy controls (HCs) underwent magnetic resonance imaging. The patients were scanned again after a 4-week treatment with paroxetine. The acquired data were subjected to VMHC, support vector regression (SVR), and correlation analyses. Compared with HCs (36 subjects), patients with OCD (34 subjects after excluding two subjects with excessive head movement) exhibited significantly lower VMHC in the bilateral superior parietal lobule (SPL), postcentral gyrus, and calcarine cortex, and VMHC in the postcentral gyrus was positively correlated with cognitive function. After treatment, the patients showed increased VMHC in the bilateral posterior cingulate cortex/precuneus (PCC/PCu) with the improvement of symptoms. SVR results showed that VMHC in the postcentral gyrus at baseline could aid to predict a change in the scores of OCD scales. This study revealed that SPL, postcentral gyrus, and calcarine cortex participate in the pathophysiological mechanism of OCD while PCC/PCu participate in the pharmacological mechanism. VMHC in the postcentral gyrus is a potential predictive biomarker of the treatment effects in OCD.


Assuntos
Transtorno Obsessivo-Compulsivo , Lobo Parietal , Humanos , Lobo Parietal/diagnóstico por imagem , Córtex Somatossensorial , Cognição , Giro do Cíngulo , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/tratamento farmacológico
19.
Blood ; 140(6): 619-629, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35560156

RESUMO

Allogeneic chimeric antigen receptor T-cell (CART) therapies require multiple gene edits to be clinically tractable. Most allogeneic CARTs have been created using gene editing techniques that induce DNA double-stranded breaks (DSBs), resulting in unintended on-target editing outcomes with potentially unforeseen consequences. Cytosine base editors (CBEs) install C•G to T•A point mutations in T cells, with between 90% and 99% efficiency to silence gene expression without creating DSBs, greatly reducing or eliminating undesired editing outcomes following multiplexed editing as compared with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). Using CBE, we developed 7CAR8, a CD7-directed allogeneic CART created using 4 simultaneous base edits. We show that CBE, unlike CRISPR-Cas9, does not impact T-cell proliferation, lead to aberrant DNA damage response pathway activation, or result in karyotypic abnormalities following multiplexed editing. We demonstrate 7CAR8 to be highly efficacious against T-cell acute lymphoblastic leukemia (T-ALL) using multiple in vitro and in vivo models. Thus, CBE is a promising technology for applications requiring multiplexed gene editing and can be used to manufacture quadruple-edited 7CAR8 cells, with high potential for clinical translation for relapsed and refractory T-ALL.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Sistemas CRISPR-Cas , Citosina , Edição de Genes/métodos , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética
20.
Opt Express ; 32(4): 6658-6671, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439364

RESUMO

By effectively controlling the dipole-dipole interaction, we investigate the characteristics of the ground state of bright solitons in a spin-orbit coupled dipolar Bose-Einstein condensate. The dipolar atoms are trapped within a double-lattice which consists of a linear and a nonlinear lattice. We derive the motion equations of the different spin components, taking the controlling mechanisms of the dipole-dipole interaction into account. An analytical expression of dipole-dipole interaction is derived. By adjusting the dipole polarization angle, the dipole interaction can be adjusted from attraction to repulsion. On this basis, we study the generation and manipulation of the bright solitons using both the analytical variational method and numerical imaginary time evolution. The stability of the bright solitons is also analyzed and we map out the stability phase diagram. By adjusting the long-range dipole-dipole interaction, one can achieve manipulation of bright solitons in all aspects, including the existence, width, nodes, and stability. Considering the complexity of our system, our results will have enormous potential applications in quantum simulation of complex systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA