RESUMO
IFN regulatory factors (IRFs) are transcription factors that mediate homeostatic mechanisms of host defense against pathogens. In addition to IRF1-9, which are conserved across vertebrates, teleost fishes have two other IRFs, IRF10 and IRF11. In zebrafish (Danio rerio), IRF10 represses the expression of IFNφ1 and IFNφ3, whereas IRF11 exerts the opposite effect. In this study, we found IRF10 could significantly inhibit the expression of IFNφ1 and IFNφ3 induced by IFN11 to synergistically regulate type I IFN expression. To clarify the synergistically regulatory mechanism of IRF10 and IRF11 in type I IFN expression, we determined and analyzed the crystal structures of the DNA-binding domains (DBDs) of zebrafish IRF10 and IRF11 bound to DNA, as well as IRF11 DBD in apo form. The interactions of IRF10-DBD and IRF11-DBD with DNA backbone were elaborated in detail. Further analysis showed that IRF10 and IRF11 have the same binding patterns and comparable affinities with the IFN-sensitive response elements of IFNφ1 and IFNφ3 promoters. Therefore, IRF10 could function as a controlling factor for IRF11 by competitive binding of the IFN-sensitive response elements to coregulate the host IFN response. Accordingly, similar to IRF1 and IRF2 in mammals, IRF10 and IRF11 act as another pair of negative and positive regulators to balance the antiviral responses in fish.
Assuntos
DNA , Fatores Reguladores de Interferon , Peixe-Zebra , Animais , Peixe-Zebra/imunologia , DNA/imunologia , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Cristalografia por Raios X , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Ligação Proteica , Regulação da Expressão Gênica , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Interferons/metabolismo , Interferons/imunologiaRESUMO
Antimicrobial peptides/proteins (AMPs) constitute a critical component of gut immunity in animals, protecting the gut from pathogenic bacteria. However, the interactions between AMPs and gut microbiota remain elusive. In this study, we show that leukocyte-derived chemotaxin-2 (LECT2)-b, a recently discovered AMP, helps maintain gut homeostasis in grass carp (Ctenopharyngodon idella), one of the major farmed fish species globally, by directly regulating the gut microbiota. Knockdown of LECT2-b resulted in dysregulation of the gut microbiota. Specifically, LECT2-b deficiency led to the dominance of Proteobacteria, consisting of proinflammatory bacterial species, over Firmicutes, which includes anti-inflammatory bacteria. In addition, the opportunistic pathogenic bacteria genus Aeromonas became the dominant genus replacing the probiotic bacteria Lactobacillus and Bacillus. Further analysis revealed that this effect was due to the direct and selective inhibition of certain pathogenic bacterial species by LECT2-b. Moreover, LECT2-b knockdown promoted biofilm formation by gut microbiota, resulting in tissue damage and inflammation. Importantly, LECT2-b treatment alleviated the negative effects induced by LECT2-b knockdown. These findings highlight the crucial role of LECT2-b in maintaining the gut microbiota homeostasis and mucosal health. Overall, our study provides important data for understanding the roles of AMPs in the regulation of gut homeostasis in animals.
Assuntos
Anti-Infecciosos , Microbioma Gastrointestinal , Probióticos , Animais , Bactérias , HomeostaseRESUMO
Teleost IgM+ B cells can phagocytose, like mammalian B1 cells, and secrete Ag-specific IgM, like mammalian B2 cells. Therefore, teleost IgM+ B cells may have the functions of both mammalian B1 and B2 cells. To support this view, we initially found that grass carp (Ctenopharyngodon idella) IgM+ plasma cells (PCs) exhibit robust phagocytic ability, akin to IgM+ naive B cells. Subsequently, we sorted grass carp IgM+ PCs into two subpopulations: nonphagocytic (Pha-IgM+ PCs) and phagocytic IgM+ PCs (Pha+IgM+ PCs), both of which demonstrated the capacity to secrete natural IgM with LPS and peptidoglycan binding capacity. Remarkably, following immunization of grass carp with an Ag, we observed that both Pha-IgM+ PCs and Pha+IgM+ PCs could secrete Ag-specific IgM. Furthermore, in vitro concatenated phagocytosis experiments in which Pha-IgM+ PCs from an initial phagocytosis experiment were sorted and exposed again to beads confirmed that these cells also have phagocytic capabilities, thereby suggesting that all teleost IgM+ B cells have phagocytic potential. Additionally, we found that grass carp IgM+ PCs display classical phenotypic features of macrophages, providing support for the hypothesis that vertebrate B cells evolved from ancient phagocytes. These findings together reveal that teleost B cells are a primitive B cell type with functions reminiscent of both mammalian B1 and B2 cells, providing insights into the origin and evolution of B cells in vertebrates.
Assuntos
Linfócitos B , Carpas , Imunoglobulina M , Fagocitose , Plasmócitos , Animais , Carpas/imunologia , Imunoglobulina M/imunologia , Fagocitose/imunologia , Plasmócitos/imunologia , Linfócitos B/imunologia , Fagócitos/imunologia , Evolução BiológicaRESUMO
Nucleoprotein (N) is well known for its function in the encapsidation of the genomic RNAs of negative-strand RNA viruses, which leads to the formation of ribonucleoproteins that serve as templates for viral transcription and replication. However, the function of the N protein in other aspects during viral infection is far from clear. In this study, the N protein of snakehead vesiculovirus (SHVV), a kind of fish rhabdovirus, was proved to be ubiquitinated mainly via K63-linked ubiquitination. We identified nine host E3 ubiquitin ligases that interacted with SHVV N, among which seven E3 ubiquitin ligases facilitated ubiquitination of the N protein. Further investigation revealed that only two E3 ubiquitin ligases, Siah E3 ubiquitin protein ligase 2 (Siah2) and leucine-rich repeat and sterile alpha motif containing 1 (LRSAM1), mediated K63-linked ubiquitination of the N protein. SHVV infection upregulated the expression of Siah2 and LRSAM1, which maintained the stability of SHVV N. Besides, overexpression of Siah2 or LRSAM1 promoted SHVV replication, while knockdown of Siah2 or LRSAM1 inhibited SHVV replication. Deletion of the ligase domain of Siah2 or LRSAM1 did not affect their interactions with SHVV N but reduced the K63-linked ubiquitination of SHVV N and SHVV replication. In summary, Siah2 and LRSAM1 mediate K63-linked ubiquitination of SHVV N to facilitate SHVV replication, which provides novel insights into the role of the N proteins of negative-strand RNA viruses. IMPORTANCE: Ubiquitination of viral protein plays an important role in viral replication. However, the ubiquitination of the nucleoprotein (N) of negative-strand RNA viruses has rarely been investigated. This study aimed at investigating the ubiquitination of the N protein of a fish rhabdovirus SHVV (snakehead vesiculovirus), identifying the related host E3 ubiquitin ligases, and determining the role of SHVV N ubiquitination and host E3 ubiquitin ligases in viral replication. We found that SHVV N was ubiquitinated mainly via K63-linked ubiquitination, which was mediated by host E3 ubiquitin ligases Siah2 (Siah E3 ubiquitin protein ligase 2) and LRSAM1 (leucine-rich repeat and sterile alpha motif containing 1). The data suggested that Siah2 and LRSAM1 were hijacked by SHVV to ubiquitinate the N protein for viral replication, which exhibited novel anti-SHVV targets for drug design.
Assuntos
Nucleoproteínas , Ubiquitina-Proteína Ligases , Ubiquitinação , Vesiculovirus , Replicação Viral , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Vesiculovirus/fisiologia , Vesiculovirus/metabolismo , Vesiculovirus/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Células HEK293 , Proteínas Virais/metabolismo , Proteínas Virais/genética , Linhagem Celular , Infecções por Rhabdoviridae/virologia , Infecções por Rhabdoviridae/metabolismo , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismoRESUMO
Viral seasonality in the aquaculture industry is an important scientific issue for decades. While the molecular mechanisms underpinning the temperature-dependent pathogenesis of aquatic viral diseases remain largely unknown. Here we report that temperature-dependent activation of IL6-STAT3 signaling was exploited by grass carp reovirus (GCRV) to promote viral entry via increasing the expression of heat shock protein 90 (HSP90). Deploying GCRV infection as a model system, we discovered that GCRV induces the IL6-STAT3-HSP90 signaling activation to achieve temperature-dependent viral entry. Further biochemical and microscopic analyses revealed that the major capsid protein VP7 of GCRV interacted with HSP90 and relevant membrane-associated proteins to boost viral entry. Accordingly, exogenous expression of either IL6, HSP90, or VP7 in cells increased GCRV entry in a dose-dependent manner. Interestingly, other viruses (e.g., koi herpesvirus, Rhabdovirus carpio, Chinese giant salamander iridovirus) infecting ectothermic vertebrates have evolved a similar mechanism to promote their infection. This work delineates a molecular mechanism by which an aquatic viral pathogen exploits the host temperature-related immune response to promote its entry and replication, instructing us on new ways to develop targeted preventives and therapeutics for aquaculture viral diseases.
Assuntos
Carpas , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Reoviridae , Animais , Internalização do Vírus , Interleucina-6/metabolismo , Infecções por Reoviridae/metabolismo , Proteínas do Capsídeo/metabolismo , Anticorpos Antivirais/metabolismoRESUMO
[This corrects the article DOI: 10.1371/journal.ppat.1011320.].
RESUMO
Teleost B cells are primitive lymphocytes with both innate and adaptive immune functions. However, the heterogeneity and differentiation trajectory of teleost B cells remain largely unknown. In this study, the landscape of grass carp IgM+ (gcIgM+) B cells was revealed by single-cell RNA sequencing. The results showed that gcIgM+ B cells mainly comprise six populations: (im)mature B cells, innate B cells, proliferating B cells, plasma cells, CD22+ cells, and CD34+ cells, among which innate B cells and proliferating B cells were uncommon B cell subsets with, to our knowledge, new characteristics. Remarkably, three functional IgMs were discovered in grass carp, and a significant percentage of gcIgM+ B cells, especially plasma cells, expressed multiple Igµ genes (Igµ1, Igµ2, and/or Igµ3). More importantly, through single-cell sorting combined with Sanger sequencing, we found that distinct VHDJH recombination patterns of Igµ genes were present in single IgM+ B cells, indicating that individual teleost B cells might produce multiple Abs by coexpressing rearranged IgM subclass genes. Moreover, the percentage of IgM1highIgM2highIgM3high plasma cells increased significantly after bacterial infection, suggesting that individual plasma cells might tend to produce multiple IgMs to resist the infection in teleost fish. In summary, to our knowledge, this study not only helps to uncover the unique heterogeneity of B cells in early vertebrates but also provided significant new evidence supporting the recently proposed "one cell-multiple Abs" paradigm, challenging the classical rule of "one cell-one Ab."
Assuntos
Infecções Bacterianas , Carpas , Doenças dos Peixes , Animais , Imunidade Inata/genética , Proteínas de Peixes/genética , Imunoglobulina M , HomeostaseRESUMO
Phosphoprotein (P), co-factor of the polymerase (large protein, L) of single-stranded negative-sense RNA viruses, is phosphorylated during viral infection and its phosphorylation has been reported to play important roles in viral replication. However, the function of P phosphorylation in viral replication is still far from clear. Snakehead vesiculovirus (SHVV) is a kind of fish rhabdovirus that has caused serious economic losses in snakehead fish culture in China without any effective preventive or therapeutical measures currently. In this study, 4D label-free phosphoproteomics sequencing of SHVV-infected cells identified five phosphorylated sites on SHVV P, among which threonine 160 (T160) was proved to be phosphorylated. Overexpression of wild-type P, but not P-T160A or P-T160E mutant, promoted SHVV replication, suggesting that the T160 phosphorylation on the P protein is critical for SHVV replication. Moreover, we found that T160A or T160E mutation on SHVV P had no effect on the interactions of P-nucleoprotein (N), P-P, or P-L. Further study revealed that p38 mitogen-activated protein kinase (p38MAPK) and glycogen synthase kinase 3 (GSK3) interacted with SHVV P and mediated the T160 phosphorylation. Besides, overexpression of p38MAPK or GSK3 facilitated, while knockdown or activity inhibition of p38MAPK or GSK3 suppressed, SHVV replication. Overall, p38MAPK- and GSK3-mediated phosphorylation of the P protein at T160 is required for SHVV replication, which provided targets for designing anti-SHVV drugs and developing live-attenuated SHVV vaccines. Our study helps understand the role of P phosphorylation in the replication of single-stranded negative-sense RNA viruses. IMPORTANCE Phosphorylation of viral proteins plays important roles in viral replication. Currently, the role of phosphorylation of phosphoprotein (P) in the replication of single-stranded negative-sense RNA viruses is far from clear. Identification of the phosphorylated sites on viral P protein and the related host kinases is helpful for developing live-attenuated vaccines and designing antiviral drugs. This study focused on identifying the phosphorylated sites on P protein of a fish rhabdovirus SHVV, determining the related host kinases, and revealing the effects of the phosphorylated sites and kinases on SHVV replication. We found that SHVV P was phosphorylated at T160, which was mediated by the kinases p38MAPK and GSK3 to promote SHVV replication. This study is the first time to study the role of P phosphorylation in fish rhabdovirus replication.
Assuntos
Quinase 3 da Glicogênio Sintase , Infecções por Rhabdoviridae , Animais , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Peixes , Vesiculovirus/genética , Proteínas Virais/genética , Replicação Viral , Fosfoproteínas/genéticaRESUMO
Asp-Glu-Ala-Asp (DEAD) box helicase 3 X-linked (DDX3X) plays important regulatory roles in the replication of many viruses. However, the role of DDX3X in rhabdovirus replication has seldomly been investigated. In this study, snakehead vesiculovirus (SHVV), a kind of fish rhabdovirus, was used to study the role of DDX3X in rhabdovirus replication. DDX3X was identified as an interacting partner of SHVV phosphoprotein (P). The expression level of DDX3X was increased at an early stage of SHVV infection and then decreased to a normal level at a later infection stage. Overexpression of DDX3X promoted, while knockdown of DDX3X using specific small interfering RNAs (siRNAs) suppressed, SHVV replication, indicating that DDX3X was a proviral factor for SHVV replication. The N-terminal and core domains of DDX3X (DDX3X-N and DDX3X-Core) were determined to be the regions responsible for its interaction with SHVV P. Overexpression of DDX3X-Core suppressed SHVV replication by competitively disrupting the interaction between full-length DDX3X and SHVV P, suggesting that full-length DDX3X-P interaction was required for SHVV replication. Mechanistically, DDX3X-mediated promotion of SHVV replication was due not to inhibition of interferon expression but to maintenance of the stability of SHVV P to avoid autophagy-lysosome-dependent degradation. Collectively, our data suggest that DDX3X is hijacked by SHVV P to ensure effective replication of SHVV, which suggests an important anti-SHVV target. This study will help elucidate the role of DDX3X in regulating the replication of rhabdoviruses. IMPORTANCE Growing evidence has suggested that DDX3X plays important roles in virus replication. In one respect, DDX3X inhibits the replication of viruses, including hepatitis B virus, influenza A virus, Newcastle disease virus, duck Tembusu virus, and red-spotted grouper nervous necrosis virus. In another respect, DDX3X is required for the replication of viruses, including hepatitis C virus, Japanese encephalitis virus, West Nile virus, murine norovirus, herpes simplex virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Because DDX3X has rarely been investigated in rhabdovirus replication, this study aimed at investigating the role of DDX3X in rhabdovirus replication by using the fish rhabdovirus SHVV as a model. We found that DDX3X was required for SHVV replication, with the mechanism that DDX3X interacts with and maintains the stability of SHVV phosphoprotein. Our data provide novel insights into the role of DDX3X in virus replication and will facilitate the design of antiviral drugs against rhabdovirus infection.
Assuntos
RNA Helicases DEAD-box , Perciformes , Fosfoproteínas , Vesiculovirus , Replicação Viral , Animais , RNA Helicases DEAD-box/genética , Peixes , Perciformes/virologia , RNA Interferente Pequeno , Vesiculovirus/patogenicidade , Vesiculovirus/fisiologia , Proteínas ViraisRESUMO
Spring viremia of carp virus (SVCV) is a highly pathogenic Vesiculovirus infecting the common carp, yet neither a vaccine nor effective therapies are available to treat spring viremia of carp (SVC). Like all negative-sense viruses, SVCV contains an RNA genome that is encapsidated by the nucleoprotein (N) in the form of a ribonucleoprotein (RNP) complex, which serves as the template for viral replication and transcription. Here, the three-dimensional (3D) structure of SVCV RNP was resolved through cryo-electron microscopy (cryo-EM) at a resolution of 3.7 Å. RNP assembly was stabilized by N and C loops; RNA was wrapped in the groove between the N and C lobes with 9 nt nucleotide per protomer. Combined with mutational analysis, our results elucidated the mechanism of RNP formation. The RNA binding groove of SVCV N was used as a target for drug virtual screening, and it was found suramin had a good antiviral effect. This study provided insights into RNP assembly, and anti-SVCV drug screening was performed on the basis of this structure, providing a theoretical basis and efficient drug screening method for the prevention and treatment of SVC. IMPORTANCE Aquaculture accounts for about 70% of global aquatic products, and viral diseases severely harm the development of aquaculture industry. Spring viremia of carp virus (SVCV) is the pathogen causing highly contagious spring viremia of carp (SVC) disease in cyprinids, especially common carp (Cyprinus carpio), yet neither a vaccine nor effective therapies are available to treat this disease. In this study, we have elucidated the mechanism of SVCV ribonucleoprotein complex (RNP) formation by resolving the 3D structure of SVCV RNP and screened antiviral drugs based on the structure. It is found that suramin could competitively bind to the RNA binding groove and has good antiviral effects both in vivo and in vitro. Our study provides a template for rational drug discovery efforts to treat and prevent SVCV infections.
Assuntos
Modelos Moleculares , Rhabdoviridae , Ribonucleoproteínas , Proteínas Virais , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Rhabdoviridae/química , Rhabdoviridae/efeitos dos fármacos , Proteínas Virais/química , Proteínas Virais/metabolismo , Estrutura Quaternária de Proteína , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Microscopia Crioeletrônica , Suramina/farmacologiaRESUMO
Bacterial ClpB is an ATP-dependent disaggregate that belongs to the Hsp100/Clp family and facilitates bacterial survival under hostile environmental conditions. Streptococcus agalactiae, which is regarded as the major bacterial pathogen of farmed Nile tilapia (Oreochromis niloticus), is known to cause high mortality and large economic losses. Here, we report a ClpB homologue of S. agalactiae and explore its functionality. S. agalactiae with a clpB deletion mutant (∆clpB) exhibited defective tolerance against heat and acidic stress, without affecting growth or morphology under optimal conditions. Moreover, the ΔclpB mutant exhibited reduced intracellular survival in RAW264.7 cells, diminished adherence to the brain cells of tilapia, increased sensitivity to leukocytes from the head kidney of tilapia and whole blood killing, and reduced mortality and bacterial loads in a tilapia infection assay. Furthermore, the reduced virulence of the ∆clpB mutant was investigated by transcriptome analysis, which revealed that deletion of clpB altered the expression levels of multiple genes that contribute to the stress response as well as certain metabolic pathways. Collectively, our findings demonstrated that ClpB, a molecular chaperone, plays critical roles in heat and acid stress resistance and virulence in S. agalactiae. This finding provides an enhanced understanding of the functionality of this ClpB homologue in gram-positive bacteria and the survival strategy of S. agalactiae against immune clearance during infection.
Assuntos
Doenças dos Peixes , Chaperonas Moleculares , Infecções Estreptocócicas , Streptococcus agalactiae , Estresse Fisiológico , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ciclídeos , Doenças dos Peixes/microbiologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Células RAW 264.7 , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/fisiologia , Streptococcus agalactiae/patogenicidade , Streptococcus agalactiae/genética , VirulênciaRESUMO
In mammals, CD4 is found to be expressed on T cells and innate immune cells, however, teleost cells bearing CD4 have not been well identified and characterized. In this study, we identified two different CD4-1+ cell subsets in grass carp (Ctenopharyngodon idella): CD4-1+ lymphocytes (Lym) and CD4-1+ myeloid cells (Mye), both of which had the highest proportions in the head kidney. The mRNA expression analysis showed that CD4-1, CD4-2, TCRß, CD3γ/δ, and LCK1 are highly expressed in CD4-1+ Lym and also expressed in CD4-1+ Mye. Furthermore, we found that CD4-1+ Lym have a Lym morphology and highly express T-cell cytokines, suggesting that they are CD4+ T cells equivalent to mammalian Th cells. On the other hand, CD4-1+ Mye were found to have a morphology of macrophage and highly express macrophage marker gene MCSFR, indicating that they are macrophages. In addition, functional analysis revealed that CD4-1+ Mye possess phagocytic ability and great antigen-processing ability. Taken together, our study sheds further light on the composition and function of CD4+ cells in teleost fish.
Assuntos
Carpas , Proteínas de Peixes , Animais , Carpas/imunologia , Carpas/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD4/genética , Antígenos CD4/imunologia , Antígenos CD4/metabolismo , Rim Cefálico/imunologia , Rim Cefálico/citologia , Células Mieloides/imunologia , Imunidade Inata/genéticaRESUMO
Cyprinid herpesvirus 3 (CyHV-3) has caused severe economic losses to carp culture, but its pathogenicity is far from clear. Our previous study has revealed that microRNA (miR)-722 was upregulated during CyHV-3 infection, indicating that miR-722 might play an important role in CyHV-3 replication. In this study, we found that overexpression of miR-722 inhibited CyHV-3 replication and promoted IFN expression. The putative target gene of miR-722 was searched over the CyHV-3 genome, and ORF89 was identified and validated as a target gene of miR-722. Overexpression of ORF89 markedly reduced the expression of IFN and IFN-stimulated genes. Mechanistically, ORF89 interacted with and degraded IFN regulatory factor 3 (IRF3), and inhibited the entry of IRF3 into the nucleus by suppressing the dimerization of IRF3. Moreover, ORF89-mediated suppression of IFN expression could be restored by adding miR-722. To our knowledge, our findings confirm a novel virus-host combat, in which CyHV-3 evades host antiviral immunity by its ORF89 protein, whereas host miR-722, upregulated on CyHV-3 infection, targets ORF89 to impede CyHV-3 replication.
Assuntos
Evasão da Resposta Imune , MicroRNAs , Fator Regulador 3 de Interferon/genética , Proteínas Virais/genética , MicroRNAs/genéticaRESUMO
Complement peptides C3a, C4a, and C5a are important components of innate immunity in vertebrates. Although they diverged from a common ancestor, only C3a and C4a can act as antibacterial peptides in Homo sapiens, suggesting that C5a has evolved into a purely chemotactic molecule; however, the antibacterial properties of C3a, C4a, and C5a across vertebrates still require elucidation. In this article, we show that, unlike those in H. sapiens, Mus musculus C3a, C4a, and C5a all possess antibacterial activities, implying that the antibacterial properties of C3a, C4a, and C5a have evolved divergently in vertebrates. The extremely different net charge, a key factor determining the antibacterial activities of cationic antimicrobial peptides, of vertebrate C3a, C4a, and C5a supports this speculation. Moreover, the antibacterial activity of overlapping peptides covering vertebrate C3a, C4a, and C5a further strongly supports the speculation, because their activity is positively correlated with the net charge of source molecules. Notably, the structures of C3a, C4a, and C5a are conserved in vertebrates, and the inactive overlapping peptides can become antibacterial peptides if mutated to possess enough net positive charges, indicating that net charge is the only factor determining the antibacterial properties of vertebrate C3a, C4a, and C5a. More importantly, many vertebrate C3a-, C4a-, and C5a-derived peptides possess high antibacterial activities yet exhibit no hemolytic activities, suggesting the application potential in anti-infective therapy. Taken together, our findings reveal that vertebrate C3a, C4a, and C5a are all sources of antibacterial peptides that will facilitate the design of excellent peptide antibiotics.
RESUMO
In vertebrates, leukocyte-derived chemotaxin-2 (LECT2) is an important immunoregulator with conserved chemotactic and phagocytosis-stimulating activities to leukocytes during bacterial infection. However, whether LECT2 possesses direct antibacterial activity remains unknown. In this article, we show that, unlike tetrapods with a single LECT2 gene, two LECT2 genes exist in teleost fish, named LECT2-a and LECT2-b Using grass carp as a research model, we found that the expression pattern of grass carp LECT2-a (gcLECT2-a) is more similar to that of LECT2 in tetrapods, while gcLECT2-b has evolved to be highly expressed in mucosal immune organs, including the intestine and skin. Interestingly, we found that gcLECT2-b, with conserved chemotactic and phagocytosis-stimulating activities, can also kill Gram-negative and Gram-positive bacteria directly in a membrane-dependent and a non-membrane-dependent manner, respectively. Moreover, gcLECT2-b could prevent the adherence of bacteria to epithelial cells through agglutination by targeting peptidoglycan and lipoteichoic acid. Further study revealed that gcLECT2-b can protect grass carp from Aeromonas hydrophila infection in vivo, because it significantly reduces intestinal necrosis and tissue bacterial load. More importantly, we found that LECT2 from representative tetrapods, except human, also possesses direct antibacterial activities, indicating that the direct antibacterial property of LECT2 is generally conserved in vertebrates. Taken together, to our knowledge, our study discovered a novel function of LECT2 in the antibacterial immunity of vertebrates, especially teleost fish, greatly enhancing our knowledge of this important molecule.
Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila , Animais , Antibacterianos , Carpas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Imunidade Inata , Leucócitos/metabolismoRESUMO
Complement peptides C3a, C4a, and C5a are important components of innate immunity in vertebrates. Although they diverged from a common ancestor, only C3a and C4a can act as antibacterial peptides in Homo sapiens, suggesting that C5a has evolved into a purely chemotactic molecule; however, the antibacterial properties of C3a, C4a, and C5a across vertebrates still require elucidation. In this article, we show that, unlike those in H. sapiens, Mus musculus C3a, C4a, and C5a all possess antibacterial activities, implying that the antibacterial properties of C3a, C4a, and C5a have evolved divergently in vertebrates. The extremely different net charge, a key factor determining the antibacterial activities of cationic antimicrobial peptides, of vertebrate C3a, C4a, and C5a supports this speculation. Moreover, the antibacterial activity of overlapping peptides covering vertebrate C3a, C4a, and C5a further strongly supports the speculation, because their activity is positively correlated with the net charge of source molecules. Notably, the structures of C3a, C4a, and C5a are conserved in vertebrates, and the inactive overlapping peptides can become antibacterial peptides if mutated to possess enough net positive charges, indicating that net charge is the only factor determining the antibacterial properties of vertebrate C3a, C4a, and C5a. More importantly, many vertebrate C3a-, C4a-, and C5a-derived peptides possess high antibacterial activities yet exhibit no hemolytic activities, suggesting the application potential in anti-infective therapy. Taken together, our findings reveal that vertebrate C3a, C4a, and C5a are all sources of antibacterial peptides that will facilitate the design of excellent peptide antibiotics.
RESUMO
The frequent outbreak of grass carp hemorrhagic disease caused by grass carp reovirus (GCRV), especially the mainly prevalent type II GCRV (GCRV-II), has seriously affected the grass carp culture in China. However, its pathogenic mechanism is still far from clear. In this study, the GCRV-II outer capsid protein VP35 was used as bait to capture interacting partners from Ctenopharyngon idellus kidney (CIK) cells, and heat shock protein 90 (Hsp90) was selected and confirmed interacting with VP35 through the C-terminal domain of Hsp90. Knockdown of Hsp90 or inhibition of Hsp90 activity suppressed GCRV-II proliferation, demonstrating that Hsp90 is an essential factor for GCRV-II proliferation. The confocal microscopy and flow cytometry showed that Hsp90 localized at both membrane and cytoplasm of CIK cells. The entry of GCRV-II into CIK cells was efficiently blocked by incubating the cells with Hsp90 antibody or by pretreating the virus with recombinant Hsp90 protein. Whereas overexpression of Hsp90 in CIK cells, grass carp ovary (GCO) cells, or 293T cells promoted GCRV-II entry, indicating that the membrane Hsp90 functions as a receptor of GCRV-II. Furthermore, Hsp90 interacted with clathrin and mediated GCRV-II entry into CIK cells through clathrin endocytosis pathway. In addition, we found that the cytoplasmic Hsp90 acted as a chaperone of VP35 because inhibition of Hsp90 activity enhanced VP35 polyubiquitination and degraded VP35 through the proteasome pathway. Collectively, our data suggest that Hsp90 functions both as a receptor for GCRV-II entry and a chaperone for the maturation of GCRV-II VP35, thus ensuring efficient proliferation of GCRV-II. IMPORTANCE Identification of viral receptors has always been the research hot spot in virus research field as receptor functions at the first stage of viral infection, which can be designed as efficient antiviral drug targets. GCRV-II, the causative agent of the grass carp epidemic hemorrhagic disease, has caused tremendous losses in grass carp culture in China. To date, the receptor of GCRV-II remains unknown. This study focused on identifying cellular receptor interacting with the GCRV-II outer capsid protein VP35, studying the effects of their interaction on GCRV-II proliferation, and revealing the underlying mechanisms. We demonstrated that Hsp90 acts both as a receptor of GCRV-II by interacting with VP35 and as a chaperone for the maturation of VP35, thus ensuring efficient proliferation of GCRV-II. Our data provide important insights into the role of Hsp90 in GCRV-II life cycle, which will help understand the mechanism of reovirus infection.
Assuntos
Proteínas do Capsídeo , Doenças dos Peixes , Proteínas de Choque Térmico , Infecções por Reoviridae , Reoviridae , Animais , Anticorpos Antivirais/metabolismo , Proteínas do Capsídeo/metabolismo , Carpas/virologia , Proliferação de Células , Clatrina/metabolismo , Doenças dos Peixes/virologia , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Virais/metabolismo , Reoviridae/fisiologia , Infecções por Reoviridae/veterináriaRESUMO
The transmembrane protein 33 (TMEM33) was originally identified as an endoplasmic reticulum (ER) protein that influences the tubular structure of the ER and modulates intracellular calcium homeostasis. However, the role of TMEM33 in antiviral immunity in vertebrates has not been elucidated. In this article, we demonstrate that zebrafish TMEM33 is a negative regulator of virus-triggered interferon (IFN) induction via two mechanisms: mitochondrial antiviral signaling protein (MAVS) ubiquitination and a decrease in the kinase activity of TANK binding kinase 1 (TBK1). Upon stimulation with viral components, tmem33 was remarkably upregulated in the zebrafish liver cell line. The IFNφ1 promoter (IFNφ1pro) activity and mRNA level induced by retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) were significantly inhibited by TMEM33. Knockdown of TMEM33 increased host ifn transcription. Subsequently, we found that TMEM33 was colocalized in the ER and interacted with the RLR cascades, whereas MAVS was degraded by TMEM33 during the K48-linked ubiquitination. On the other hand, TMEM33 reduced the phosphorylation of mediator of IFN regulatory factor 3 (IRF3) activation (MITA)/IRF3 by acting as a decoy substrate of TBK1, which was also phosphorylated. A functional domain assay revealed that the N-terminal transmembrane domain 1 (TM1) and TM2 regions of TMEM33 were necessary for IFN suppression. Finally, TMEM33 significantly attenuated the host cellular antiviral capacity by blocking the IFN response. Taken together, our findings provide insight into the different mechanisms employed by TMEM33 in cellular IFN-mediated antiviral process.
Assuntos
Regulação da Expressão Gênica , Interferons/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Infecções por Rhabdoviridae/virologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Fígado/imunologia , Fígado/virologia , Proteínas de Membrana/genética , Fosforilação , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/metabolismo , Ubiquitinação , Peixe-Zebra , Proteínas de Peixe-Zebra/genéticaRESUMO
Immunoglobulins (Igs) are important effector molecules that mediate humoral immunity. A typical Ig consists of two heavy and two light chains. In teleosts, three Ig heavy chain isotypes (Igµ, Igδ and Igτ) and three Ig light chain isotypes (Igκ, Igλ and Igσ) have been identified. Compared to the heavy chains, teleost Ig light chains have been poorly studied due to the lack of antibodies. In this study, a mouse anti-Nile tilapia Igλ monoclonal antibody (mAb) was prepared, which could specifically recognize Igλ in serum and Igλ+ B cells in tissues. Further, the composition of IgM+ and Igλ+ B cell subsets was analyzed using this antibody and a mouse anti-tilapia IgM heavy chain mAb. The ratio of IgM+Igλ+ B cells to total IgM+ B cells in head kidney and peripheral blood was about 30%, while that in spleen was about 50%; the ratio of IgM-Igλ+ B cells to total Igλ+ B cells in head kidney and peripheral blood was about 45%, while that in spleen was about 25%. The IgM-Igλ+ B cells was speculated to be IgT+ B cells. Finally, we detected an increase in the level of specific antibodies against the surface antigen-Sip of Streptococcus agalactiae in serum after S. agalactiae infection, indicating that mouse anti-tilapia Igλ mAb can be used to detect the antibody level after immunization of Nile tilapia, which lays a foundation for the evaluation of immunization effect of tilapia vaccine.
Assuntos
Subpopulações de Linfócitos B , Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Tilápia , Camundongos , Animais , Anticorpos Monoclonais , Imunidade Humoral , Imunossupressores , Streptococcus agalactiae , Imunoglobulina MRESUMO
In mammals, cyclic GMP-AMP synthase (cGAS) recognizes cytosolic dsDNA to induce the type I IFN response. However, the functional role of cGAS in the IFN response of fish remains unclear or controversial. In this study, we report that cGAS orthologs from crucian carp Carassius auratus (CacGAS) and grass carp Ctenopharyngodon idellus (CicGAS) target the dsRNA sensor retinoic acid-inducible gene I (RIG-I) for negative regulation of the IFN response. First, poly(deoxyadenylic-deoxythymidylic) acid-, polyinosinic-polycytidylic acid-, and spring viremia of carp virus-induced IFN responses were impaired by overexpression of CacGAS and CicGAS. Then, CacGAS and CicGAS interacted with CiRIG-I and CiMAVS and inhibited CiRIG-I- and CiMAVS-mediated IFN induction. Moreover, the K63-linked ubiquitination of CiRIG-I and the interaction between CiRIG-I and CiMAVS were attenuated by CacGAS and CicGAS. Finally, CacGAS and CicGAS decreased CiRIG-I-mediated the cellular antiviral response and facilitated viral replication. Taken together, data in this study identify CacGAS and CicGAS as negative regulators in RIG-I-like receptor signaling, which extends the current knowledge regarding the role of fish cGAS in the innate antiviral response.