Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(30): e2206588119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867821

RESUMO

Oncogenic mutations within the epidermal growth factor receptor (EGFR) are found in 15 to 30% of all non-small-cell lung carcinomas. The term exon 19 deletion (ex19del) is collectively used to refer to more than 20 distinct genomic alterations within exon 19 that comprise the most common EGFR mutation subtype in lung cancer. Despite this heterogeneity, clinical treatment decisions are made irrespective of which EGFR ex19del variant is present within the tumor, and there is a paucity of information regarding how individual ex19del variants influence protein structure and function. Herein, we identified allele-specific functional differences among ex19del variants attributable to recurring sequence and structure motifs. We built all-atom structural models of 60 ex19del variants identified in patients and combined molecular dynamics simulations with biochemical and biophysical experiments to analyze three ex19del mutations (E746_A750, E746_S752 > V, and L747_A750 > P). We demonstrate that sequence variation in ex19del alters oncogenic cell growth, dimerization propensity, enzyme kinetics, and tyrosine kinase inhibitor (TKI) sensitivity. We show that in contrast to E746_A750 and E746_S752 > V, the L747_A750 > P variant forms highly active ligand-independent dimers. Enzyme kinetic analysis and TKI inhibition experiments suggest that E746_S752 > V and L747_A750 > P display reduced TKI sensitivity due to decreased adenosine 5'-triphosphate Km. Through these analyses, we propose an expanded framework for interpreting ex19del variants and considerations for therapeutic intervention.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Éxons , Neoplasias Pulmonares , Alelos , Motivos de Aminoácidos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Ativação Enzimática/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/genética , Éxons/genética , Humanos , Cinética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Recidiva Local de Neoplasia/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Deleção de Sequência
2.
Cell Physiol Biochem ; 45(4): 1515-1528, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29486476

RESUMO

BACKGROUND/AIMS: The overexpression of ATP-Binding Cassette (ABC) transporters has known to be one of the major obstacles impeding the success of chemotherapy in drug resistant cancers. In this study, we evaluated voruciclib, a CDK 4/6 inhibitor, for its chemo-sensitizing activity in ABCB1- and ABCG2- overexpressing cells. METHODS: Cytotoxicity and reversal effect of voruciclib was determined by MTT assay. The intracellular accumulation and efflux of ABCB1 and ABCG2 substrates were measured by scintillation counter. The effects on expression and intracellular localization of ABCB1 and ABCG2 proteins were determined by Western blotting and immunofluorescence, respectively. Vanadate-sensitive ATPase assay was done to determine the effect of voruciclib on the ATPase activity of ABCB1 and ABCG2. Flow cytometric analysis was done to determine the effect of voruciclib on apoptosis of ABCB1 and ABCG2-overexpressing cells and docking analysis was done to determine the interaction of voruciclib with ABCB1 and ACBG2 protein. RESULTS: Voruciclib significantly potentiated the effect of paclitaxel and doxorubicin in ABCB1-overexpressing cells, as well as mitoxantrone and SN-38 in ABCG2-overexpressing cells. Voruciclib moderately sensitized ABCC10- overexpressing cells to paclitaxel, whereas it did not alter the cytotoxicity of substrates of ABCC1. Furthermore, voruciclib increased the intracellular accumulation and decreased the efflux of substrate anti-cancer drugs from ABCB1- or ABCG2-overexpressing cells. However, voruciclib did not alter the expression or the sub-cellular localization of ABCB1 or ABCG2. Voruciclib stimulated the ATPase activity of both ABCB1 and ABCG2 in a concentration-dependent manner. Lastly, voruciclib exhibited a drug-induced apoptotic effect in ABCB1- or ABCG2- overexpressing cells. CONCLUSION: Voruciclib is currently a phase I clinical trial drug. Our findings strongly support its potential use in combination with conventional anti-cancer drugs for cancer chemotherapy.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Imino Furanoses/farmacologia , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzopiranos/química , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Doxorrubicina/farmacologia , Células HEK293 , Humanos , Imino Furanoses/química , Mitoxantrona/farmacologia , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Paclitaxel/farmacologia , Inibidores de Proteínas Quinases/química , Estrutura Terciária de Proteína
3.
Opt Commun ; 411: 53-58, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30140109

RESUMO

We report the patterned synthesis of ZnO nanorod arrays of diameters between 50 nm and 130 nm and various spacings. This was achieved by patterning hole arrays in a polymethyl methacrylate layer with electron beam lithography, followed by chemical synthesis of ZnO nanorods in the patterned holes using the hydrothermal method. The fabrication of ZnO nanorod waveguide arrays is also demonstrated by embedding the nanorods in a silver film using the electroplating process. Optical transmission measurement through the nanorod waveguide arrays is performed and strong resonant transmission of visible light is observed. We have found the resonance shifts to a longer wavelength with increasing nanorod diameter. Furthermore, the resonance wavelength is independent of the nanowaveguide array period, indicating the observed resonant transmission is the effect of a single ZnO nanorod waveguide. These nanorod waveguides may be used in single-molecule imaging and sensing as a result of the nanoscopic profile of the light transmitted through the nanorods and the controlled locations of these nanoscale light sources.

4.
Pharmacol Res ; 119: 89-98, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28131876

RESUMO

Cabozantinib (XL184) is a small molecule tyrosine kinase receptor inhibitor, which targets c-Met and VEGFR2. Cabozantinib has been approved by the Food and Drug Administration to treat advanced medullary thyroid cancer and renal cell carcinoma. In the present study, we evaluated the ability of cabozantinib to modulate the function of the ATP-binding cassette subfamily G member 2 (ABCG2) by sensitizing cells that are resistant to ABCG2 substrate antineoplastic drugs. We used a drug-selected resistant cell line H460/MX20 and three ABCG2 stable transfected cell lines ABCG2-482-R2, ABCG2-482-G2, and ABCG2-482-T7, which overexpress ABCG2. Cabozantinib, at non-toxic concentrations (3 or 5µM), sensitized the ABCG2-overexpressing cells to mitoxantrone, SN-38, and topotecan. Our results indicate that cabozantinib reverses ABCG2-mediated multidrug resistance by antagonizing the drug efflux function of the ABCG2 transporter instead of downregulating its expression. The molecular docking analysis indicates that cabozantinib binds to the drug-binding site of the ABCG2 transporter. Overall, our findings demonstrate that cabozantinib inhibits the ABCG2 transporter function and consequently enhances the effect of the antineoplastic agents that are substrates of ABCG2. Cabozantinib may be a useful agent in anticancer treatment regimens for patients who are resistant to ABCG2 substrate drugs.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Anilidas/farmacologia , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Piridinas/farmacologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Mitoxantrona/farmacologia , Simulação de Acoplamento Molecular , Neoplasias/metabolismo , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia
5.
Molecules ; 21(9)2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27649127

RESUMO

In recent years, tyrosine kinase inhibitors (TKIs) have been shown capable of inhibiting the ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR). In this study, we determine whether osimertinib, a novel selective, irreversible EGFR (epidermal growth factor receptor) TKI, could reverse ABC transporter-mediated MDR. The results showed that, at non-toxic concentrations, osimertinib significantly sensitized both ABCB1-transfected and drug-selected cell lines to substrate anticancer drugs colchicine, paclitaxel, and vincristine. Osimertinib significantly increased the accumulation of [³H]-paclitaxel in ABCB1 overexpressing cells by blocking the efflux function of ABCB1 transporter. In contrast, no significant alteration in the expression levels and localization pattern of ABCB1 was observed when ABCB1 overexpressing cells were exposed to 0.3 µM osimertinib for 72 h. In addition, ATPase assay showed osimertinib stimulated ABCB1 ATPase activity. Molecular docking and molecular dynamic simulations showed osimertinib has strong and stable interactions at the transmembrane domain of human homology ABCB1. Taken together, our findings suggest that osimertinib, a clinically-approved third-generation EGFR TKI, can reverse ABCB1-mediated MDR, which supports the combination therapy with osimertinib and ABCB1 substrates may potentially be a novel therapeutic stategy in ABCB1-positive drug resistant cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Mutação , Neoplasias/tratamento farmacológico , Piperazinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Acrilamidas , Compostos de Anilina , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo
6.
Mar Drugs ; 13(4): 2267-86, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25874923

RESUMO

Our previous studies showed that several sipholane triterpenes, sipholenol A, sipholenone E, sipholenol L and siphonellinol D, have potent reversal effect for multidrug resistance (MDR) in cancer cells that overexpressed P-glycoprotein (P-gp/ABCB1). Through comparison of cytotoxicity towards sensitive and multi-drug resistant cell lines, we identified that the semisynthetic esters sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate potently reversed P-gp-mediated MDR but had no effect on MRP1/ABCC1 and BCRP/ABCG2-mediated MDR. The results from [3H]-paclitaxel accumulation and efflux studies suggested that these two triterpenoids were able to increase the intracellular accumulation of paclitaxel by inhibiting its active efflux. In addition, western blot analysis revealed that these two compounds did not alter the expression levels of P-gp when treated up to 72 h. These sipholenol derivatives also stimulated the ATPase activity of P-gp membranes, which suggested that they might be substrates of P-gp. Moreover, in silico molecular docking studies revealed the virtual binding modes of these two compounds into human homology model of P-gp. In conclusion, sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate efficiently inhibit the P-gp and may represent potential reversal agents for the treatment of multidrug resistant cancers.


Assuntos
Antineoplásicos Fitogênicos/agonistas , Neoplasias do Colo/tratamento farmacológico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Paclitaxel/agonistas , Triterpenos/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Absorção Fisiológica/efeitos dos fármacos , Acetatos/química , Acetatos/metabolismo , Acetatos/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Sítios de Ligação , Callyspongia/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Sinergismo Farmacológico , Esterificação , Células HEK293 , Humanos , Ácidos Isonicotínicos/química , Ácidos Isonicotínicos/metabolismo , Ácidos Isonicotínicos/farmacologia , Conformação Molecular , Simulação de Acoplamento Molecular , Paclitaxel/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Triterpenos/química , Triterpenos/metabolismo
7.
Chin J Cancer ; 34(11): 488-95, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26370907

RESUMO

Multidrug resistance (MDR), defined as the resistance of cancer cells to compounds with diverse structures and mechanisms of actions, significantly limits the efficacy of antitumor drugs. A major mechanism that mediates MDR in cancer is the overexpression of adenosine triphosphate (ATP)-binding cassette transporters. These transporters bind to their respective substrates and catalyze their efflux from cancer cells, thereby lowering the intracellular concentrations of the substrates and thus attenuating or even abolishing their efficacy. In addition, cancer cells can become resistant to drugs via mechanisms that attenuate apoptosis and cell cycle arrest such as alterations in the p53, check point kinase, nuclear factor kappa B, and the p38 mitogen-activated protein kinase pathway. In this review, we discuss the mechanisms by which ß-elemene, a compound extracted from Rhizoma zedoariae that has clinical antitumor efficacy, overcomes drug resistance in cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Sesquiterpenos , Antineoplásicos , Apoptose , Resistência a Múltiplos Medicamentos , Humanos , Neoplasias , Pinellia
8.
J Cell Biochem ; 115(8): 1381-91, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24939447

RESUMO

ARRY-334543 is a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases. We conducted this study to determine whether ARRY-334543 can enhance the efficacy of conventional anticancer drugs through interaction with ABC transporters. Lung cancer cell line NCI-H460 and its ABCG2-overexpressing NCI-H460/MX20, as well as the ABCG2-, ABCB1-, and ABCC10-overexpressing transfected cell lines were used for the reversal study. Our results demonstrated that ARRY-334543 (1.0 µM) significantly reversed ABCG2-mediated multidrug resistance (MDR) by directly inhibiting the drug efflux function of ABCG2, resulting in the elevated intracellular accumulation of chemotherapeutic drugs in the ABCG2-overexpressing cell lines. In addition, in isolated membranes, ARRY-334543 stimulated ATPase activity and inhibited photolabeling of ABCG2 with [(125)I]-iodoarylazidoprazosin in a concentration-dependent manner indicating that this drug directly interacts at the drug-binding pocket of this transporter. ARRY-334543 (1.0 µM) only slightly reversed ABCB1- and partially reversed ABCC10-mediated MDR suggesting that it exhibits high affinity toward ABCG2. Moreover, homology modeling predicted the binding conformation of ARRY-334543 at Arg482 centroid-based grid of ABCG2. However, ARRY-334543 at reversal concentrations did not affect the expression level of ABCG2, AKT and ERK1/2 and regulate the re-localization of ABCG2. We conclude that ARRY-334543 significantly reverses drug resistance mediated by ABCG2.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Inibidores de Proteínas Quinases/administração & dosagem , Quinazolinas/administração & dosagem , Tiazóis/administração & dosagem , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/química , Proteínas Oncogênicas v-erbB/antagonistas & inibidores , Proteínas Oncogênicas v-erbB/genética , Paclitaxel/administração & dosagem , Ligação Proteica , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética
9.
Cancer Sci ; 105(8): 1071-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24903205

RESUMO

ATP-binding cassette (ABC) transmembrane proteins evidently decrease the intracellular accumulation of substrate chemotherapeutic drugs by extruding them against a concentration gradient, thereby inducing drug resistance. Here we reported the effect of WHI-P154, an irreversible inhibitor of Janus kinase 3 and epidermal growth factor receptor tyrosine kinases, on reversing ABC transporters-mediated drug resistance. We found that WHI-P154 significantly enhanced the sensitivity of ABCG2-overexpressing cells to its substrates. WHI-P154 moderately sensitized ABCB1-overexpressing KB-C2 cells to its substrates whereas showed no sensitizing effect on ABCC1-, ABCC2 or ABCC10-mediated drug resistance. Moreover, WHI-P154 produced a significant increase in the intracellular accumulation of [³H]-mitoxantrone in ABCG2-overexpressing cells. The expression levels nor the localization of the ABCG2 protein was altered after treatment of ABCG2-overexpressing cells with WHI-P154. Further studies indicated that WHI-P154 enhanced the ATPase activity of ABCG2 at low concentrations (<10 µM). Additionally, a docking model predicted the binding conformation of WHI-P154 within the transmembrane region of homology-modeled human ABCG2 transporter. Collectively, these findings highlighted WHI-P154 could significantly reverse ABCG2-mediated multidrug drug resistance by directly blocking the efflux function.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Quinazolinas/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Western Blotting , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Imunofluorescência , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla
10.
Mar Drugs ; 12(7): 3818-37, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24979269

RESUMO

ATP binding cassette (ABC) transporters, such as P-gp, BCRP and MRP1, can increase efflux of clinical chemotherapeutic agents and lead to multi-drug resistance (MDR) in cancer cells. While the discovery and development of clinically useful inhibitors has proved elusive to date, this molecular target nevertheless remains a promising strategy for addressing and potentially overcoming MDR. In a search for new classes of inhibitor, we used fluorescent accumulation and efflux assays supported by cell flow cytometry and MDR reversal assays, against a panel of sensitive and MDR human cancer cell lines, to evaluate the marine sponge co-metabolites 1-12 as inhibitors of P-gp, BCRP or MRP1 initiated MDR. These studies identified and characterized lamellarin O (11) as a selective inhibitor of BCRP mediated drug efflux. A structure-activity relationship analysis inclusive of the natural products 1-12 and the synthetic analogues 13-19, supported by in silico docking studies, revealed key structural requirements for the lamellarin O (11) BCRP inhibitory pharmacophore.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Cumarínicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Isoquinolinas/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Poríferos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/fisiologia , Animais , Austrália , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos , Fluoresceínas/metabolismo , Humanos , Mitoxantrona/metabolismo , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Proteínas de Neoplasias/fisiologia , Relação Estrutura-Atividade
11.
Surgeon ; 12(3): 129-33, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24054836

RESUMO

OBJECTIVE: This study aimed to investigate the expression of PP2A/PR65 protein in ameloblastoma and the molecular mechanisms underlying the regulation of PP2A/PR65. The association between PP2A/PR65 and the clinicopathological characteristics of tumor specimens in ameloblastoma were to provide a theoretical basis for the diagnosis, therapy and prognosis of ameloblastoma. STUDY DESIGN: Streptavidin-peroxidase (S-P) immunohistochemical staining was used to detect PP2A/Pr65 expression changes in a total of 68 cases of ameloblastoma, six ameloblastic carcinomas, 21 squamous cell carcinomas and seven normal oral mucosas. Western blot was used to analyze PP2A/PR65 protein expression in 15 cases of ameloblastoma and three cases of normal oral mucosa. RESULTS: Of the 68 cases analyzed, four cases were negative, 25 cases were weakly positive, 20 cases were moderately positive and 19 cases were strongly positive. In six cases of ameloblastic carcinoma, three cases were weak positive, one case was positive, two cases were strongly positive and none were negative. In 21 cases of squamous cell carcinomas, three cases were negative, 17 cases were weakly positive, one case was moderately positive and none were strongly positive. Western blot analysis showed that, PP2A/Pr65 protein expression was lower in ameloblastoma tissue compared with normal oral mucosa. CONCLUSIONS: Reduced expression of PP2A/PR65 in ameloblastoma compared with normal oral mucosa indicates that PP2A/PR65 is involved in the occurrence and development of ameloblastoma.


Assuntos
Ameloblastoma/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Maxilomandibulares/genética , Neoplasias Bucais/genética , Proteína Fosfatase 2/genética , RNA Neoplásico/genética , Adolescente , Adulto , Idoso , Ameloblastoma/metabolismo , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Western Blotting , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Maxilomandibulares/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/metabolismo , Prognóstico , Proteína Fosfatase 2/biossíntese , Adulto Jovem
12.
Cancer Res ; 84(10): 1680-1698, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38501978

RESUMO

Immune checkpoint inhibitors (ICI) have transformed cancer treatment. However, only a minority of patients achieve a profound response. Many patients are innately resistant while others acquire resistance to ICIs. Furthermore, hepatotoxicity and suboptimal efficacy have hampered the clinical development of agonists of 4-1BB, a promising immune-stimulating target. To effectively target 4-1BB and treat diseases resistant to ICIs, we engineered ATG-101, a tetravalent "2+2″ PD-L1×4-1BB bispecific antibody. ATG-101 bound PD-L1 and 4-1BB concurrently, with a greater affinity for PD-L1, and potently activated 4-1BB+ T cells when cross-linked with PD-L1-positive cells. ATG-101 activated exhausted T cells upon PD-L1 binding, indicating a possible role in reversing T-cell dysfunction. ATG-101 displayed potent antitumor activity in numerous in vivo tumor models, including those resistant or refractory to ICIs. ATG-101 greatly increased the proliferation of CD8+ T cells, the infiltration of effector memory T cells, and the ratio of CD8+ T/regulatory T cells in the tumor microenvironment (TME), rendering an immunologically "cold" tumor "hot." Comprehensive characterization of the TME after ATG-101 treatment using single-cell RNA sequencing further revealed an altered immune landscape that reflected increased antitumor immunity. ATG-101 was well tolerated and did not induce hepatotoxicity in non-human primates. According to computational semimechanistic pharmacology modeling, 4-1BB/ATG-101/PD-L1 trimer formation and PD-L1 receptor occupancy were both maximized at around 2 mg/kg of ATG-101, providing guidance regarding the optimal biological dose for clinical trials. In summary, by localizing to PD-L1-rich microenvironments and activating 4-1BB+ immune cells in a PD-L1 cross-linking-dependent manner, ATG-101 safely inhibits growth of ICI resistant and refractory tumors. SIGNIFICANCE: The tetravalent PD-L1×4-1BB bispecific antibody ATG-101 activates 4-1BB+ T cells in a PD-L1 cross-linking-dependent manner, minimizing the hepatotoxicity of existing 4-1BB agonists and suppressing growth of ICI-resistant tumors. See related commentary by Ha et al., p. 1546.


Assuntos
Anticorpos Biespecíficos , Antígeno B7-H1 , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Humanos , Camundongos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos
13.
Huan Jing Ke Xue ; 44(6): 3488-3499, 2023 Jun 08.
Artigo em Zh | MEDLINE | ID: mdl-37309965

RESUMO

Based on the concentration data of seven heavy metal elements[As, Cd, Cu, Pb, Hg, Ni, and Cr(Ⅵ)] in the surface soil of a typical industrial park in northwest China, the characteristics of heavy metal pollution in the industrial park were analyzed, and the ecological risk and pollution were evaluated using the potential ecological risk index and the index of geo-accumulation. The positive matrix factorization (PMF) model and random forest (RF) model were used for quantitative source analysis, and the emission data of sampling enterprises and empirical data of the source emission component spectrum were combined to identify the characteristic elements and determine the emission source category. The results showed that the heavy metals at all sampling points in the park did not exceed the second-class screening value of construction land in the soil pollution risk control standard for construction land (GB 36600-2018). However, compared with the local soil background values, five elements, excluding As and Cr, were enriched in different degrees, presenting slight pollution and moderate ecological risk (RI=250.04). Cd and Hg were the main risk elements of the park. The results of source analysis showed that the five main sources of pollution were fossil fuel combustion and chemical production sources (33.73%, 9.71%, total source contribution rate of PMF and RF, respectively; the same below), natural sources and waste residue landfill (32.40%, 40.80%), traffic emissions (24.49%, 48.08%), coal burning and non-ferrous metal smelting (5.43%, 0.11%), and electroplating and ore smelting (3.95%, 1.30%). The simulation R2 of the total variable of the two models were above 0.96, indicating that the models could predict heavy metals well. However, considering the actual situation of the number of enterprises in the park and roading density, the main pollution sources of soil heavy metals in the park should be industrial sources, and the simulation results of the PMF model were closer to the actual situation in the park.

14.
Prep Biochem Biotechnol ; 41(2): 201-17, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21442555

RESUMO

An intracellular α-glucosidase with high transglycosylation activity was purified from a mutant strain of Aspergillus niger M-1 by sequential chromatography using a DEAE-cellulose 52 column, a DEAE-Sepharose CL-6B column, and a Sephadex G-100 column. The molecular mass of the purified enzyme was determined to be 116 kD with no subunits and a pI of 5.23. Maximal α-glucosidase activity occurred at pH 6.0 and 50°C. The N-terminal amino acid sequences were identified as N-SVPGTEYVV-. The presence of Ca(2+) enhanced the enzyme activity by 20%, while the α-glucosidase activity was strongly inhibited by p-chloromercuribenzoate, N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride, monochloroacetic acid, and 2-mercaptoethanol. In addition, Ag(+), n-bromosuccinimide, and acetylacetone inhibited enzyme activity by 70%, 50%, and 22%, respectively. K(m) values of 4.32 m mol L(-1) and V(max) of 3.10 × 10(-2) mol L(-1) min(-1) were found for methyl-α-D-glucopyranoside (α-MG). Maltose was identified as the preferred substrate. The high-performance liquid chromatography (HPLC) analysis indicated that the oligosaccharide products contained 10.54% of isomaltose, 8.08% of panose, and 9.29% of isomaltotriose, and the amount of glucose, maltose, maltotriose, and maltotetrose was dropped from 22.21% to 15.80% using the purified enzyme in the solution of 25% maltose and 3% glucose. This intracellular α-glucosidase has potential applications in the synthesis of sugar derivatives and the investigation of associated mechanisms.


Assuntos
Proteínas Fúngicas/isolamento & purificação , alfa-Glucosidases/isolamento & purificação , Sequência de Aminoácidos , Aspergillus niger/química , Cromatografia em Gel , Cromatografia por Troca Iônica , Inibidores Enzimáticos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Glicosilação , Concentração de Íons de Hidrogênio , Focalização Isoelétrica , Cinética , Metais/metabolismo , Dados de Sequência Molecular , Peso Molecular , Oligossacarídeos/metabolismo , Especificidade por Substrato , Temperatura , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo
15.
Nat Commun ; 12(1): 1382, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654076

RESUMO

Mechanistic understanding of oncogenic variants facilitates the development and optimization of treatment strategies. We recently identified in-frame, tandem duplication of EGFR exons 18 - 25, which causes EGFR Kinase Domain Duplication (EGFR-KDD). Here, we characterize the prevalence of ERBB family KDDs across multiple human cancers and evaluate the functional biochemistry of EGFR-KDD as it relates to pathogenesis and potential therapeutic intervention. We provide computational and experimental evidence that EGFR-KDD functions by forming asymmetric EGF-independent intra-molecular and EGF-dependent inter-molecular dimers. Time-resolved fluorescence microscopy and co-immunoprecipitation reveals EGFR-KDD can form ligand-dependent inter-molecular homo- and hetero-dimers/multimers. Furthermore, we show that inhibition of EGFR-KDD activity is maximally achieved by blocking both intra- and inter-molecular dimerization. Collectively, our findings define a previously unrecognized model of EGFR dimerization, providing important insights for the understanding of EGFR activation mechanisms and informing personalized treatment of patients with tumors harboring EGFR-KDD. Finally, we establish ERBB KDDs as recurrent oncogenic events in multiple cancers.


Assuntos
Receptores ErbB/química , Receptores ErbB/metabolismo , Duplicação Gênica , Terapia de Alvo Molecular , Oncogenes , Sequência de Aminoácidos , Animais , Linhagem Celular , Proliferação de Células , Epitopos/metabolismo , Receptores ErbB/genética , Ligantes , Camundongos , Neoplasias/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Relação Estrutura-Atividade
16.
J Thorac Oncol ; 16(7): 1211-1223, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33839362

RESUMO

INTRODUCTION: The programmed death-ligand 1 (PD-L1) immune checkpoint inhibitors, atezolizumab and durvalumab, have received regulatory approval for the first-line treatment of patients with extensive-stage SCLC. Nevertheless, when used in combination with platinum-based chemotherapy, these PD-L1 inhibitors only improve overall survival by 2 to 3 months. This may be due to the observation that less than 20% of SCLC tumors express PD-L1 at greater than 1%. Evaluating the composition and abundance of checkpoint molecules in SCLC may identify molecules beyond PD-L1 that are amenable to therapeutic targeting. METHODS: We analyzed RNA-sequencing data from SCLC cell lines (n = 108) and primary tumor specimens (n = 81) for expression of 39 functionally validated inhibitory checkpoint ligands. Furthermore, we generated tissue microarrays containing SCLC cell lines and patient with SCLC specimens to confirm expression of these molecules by immunohistochemistry. We annotated patient outcomes data, including treatment response and overall survival. RESULTS: The checkpoint protein B7-H6 (NCR3LG1) exhibited increased protein expression relative to PD-L1 in cell lines and tumors (p < 0.05). Higher B7-H6 protein expression correlated with longer progression-free survival (p = 0.0368) and increased total immune infiltrates (CD45+) in patients. Furthermore, increased B7-H6 gene expression in SCLC tumors correlated with a decreased activated natural killer cell gene signature, suggesting a complex interplay between B7-H6 expression and immune signature in SCLC. CONCLUSIONS: We investigated 39 inhibitory checkpoint molecules in SCLC and found that B7-H6 is highly expressed and associated with progression-free survival. In addition, 26 of 39 immune checkpoint proteins in SCLC tumors were more abundantly expressed than PD-L1, indicating an urgent need to investigate additional checkpoint targets for therapy in addition to PD-L1.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Antígeno B7-H1 , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Intervalo Livre de Progressão , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética
17.
Cancers (Basel) ; 12(2)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098067

RESUMO

Although the judicious use of anticancer drugs that target one or more receptor tyrosine kinases constitutes an effective strategy to attenuate tumor growth, drug resistance is commonly encountered in cancer patients. The ATP-binding cassette transporters are one of the major contributors to the development of multidrug resistance as their overexpression significantly decreases the intracellular concentration and thus, the efficacy of certain anticancer drugs. Therefore, the development of treatment strategies that would not be susceptible to efflux or excretion by specific ABC transporters could overcome resistance to treatment. Here, we investigated the anticancer efficacy of saporin, a ribosome-inactivating protein. Since saporin has poor permeability across the cell membrane, it was encapsulated in a lipid-based nanoparticle system (EC16-1) that effectively delivered the formulation (EC16-1/saporin) intracellularly and produced anti-cancer efficacy. EC16-1/saporin, at nanomolar concentrations, significantly inhibited the cellular proliferation of parental and ABCB1- and ABCG2-overexpressing cancer cells. EC16-1/saporin did not significantly alter the subcellular localization of ABCB1 and ABCG2. In addition, EC16-1/saporin induced apoptosis in parental and ABCB1- and ABCG2-overexpressing cancer cells. In a murine model system, EC16-1/saporin significantly inhibited the tumor growth in mice xenografted with parental and ABCB1- and ABCG2-overexpressing cancer cells. Our findings suggest that the EC16-1/saporin combination could potentially be a novel therapeutic treatment in patients with parental or ABCB1- and ABCG2-positive drug-resistant cancers.

18.
Cancers (Basel) ; 12(2)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059437

RESUMO

MLN4924 (pevonedistat) is a first-in-class NEDD8-activating enzyme (NAE) inhibitor in clinical trials for the treatment of solid tumors and hematologic malignancies. Despite the promising activity of MLN4924 observed in early trials, drug resistance has been noted in some patients. Identifying the underlying cause of treatment failure may help to better stratify patients that are most likely to benefit from this novel agent. Early preclinical studies revealed that the development of NAE mutations promotes resistance to MLN4924. However, these mutations have not been detected in patients that are relapsed/refractory to MLN4924, suggesting that other mechanisms are driving clinical resistance. To better understand the potential mechanisms of MLN4924 resistance, we generated MLN4924-resistant ovarian cancer cells. Interestingly, these cells did not develop mutations in NAE. Transcriptome analyses revealed that one of the most upregulated genes in resistant cells was ABCG2. This result was validated by quantitative real-time PCR and immunoblotting. Importantly, the sensitivity of MLN4924-resistant cells was restored by lentiviral short hairpin RNA (shRNA) targeting ABCG2. Further investigation using ABCG2-overexpressing NCI-H460/MX20 cells determined that these cells are resistant to the anticancer effects of MLN4924 and can be sensitized by co-treatment with the ABCG2 inhibitors YHO-13351 and fumitremorgin C. Finally, HEK293 models with overexpression of wild-type ABCG2 (R482) and variants (R482G and R482T) all demonstrated significant resistance to MLN4924 compared to wild-type cells. Overall, these findings define an important molecular resistance mechanism to MLN4924 and demonstrate that ABCG2 may be a useful clinical biomarker that predicts resistance to MLN4924 treatment.

19.
Biochem Pharmacol ; 175: 113848, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32044354

RESUMO

The enhancement of drug efflux caused by ATP-binding cassette (ABC) transporters (including ABCG2 and ABCB1) overexpression is an important factor for multidrug resistance (MDR) in cancers. After testing the reversal activities of 19 chalcone and bis-chalcone derivatives on MDR cancer cell lines, we found that non-basic chalcone CYB-2 exhibited the most potent reversal activities against both ABCG2- and ABCB1-mediated MDR. The mechanistic studies show that this compound can increase the accumulation of anticancer drugs in both ABCG2- and ABCB1-overexpressing cancer cell lines, resulting from the blocked efflux function of the MDR cancer cell lines. This inhibition is due to the barred ABCG2 and ABCB1 ATPase activities rather than altering the expression or localization of ABCG2 or ABCB1 transporters. The previous studies showed that non-basic chalcones were ABCG2-specific inhibitors; however, we found that non-basic chalcone CYB-2 can be developed as an ABCG2/ABCB1 dual inhibitor to overcome MDR in cancers that co-express both ABCG2 and ABCB1. Moreover, non-basic chalcone CYB-2 has synthetic tractability compared to other chalcone-based derivatives.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Chalconas/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Antineoplásicos/química , Linhagem Celular Tumoral , Chalconas/química , Humanos , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/genética
20.
Chem Commun (Camb) ; 55(26): 3833-3836, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30869688
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA