Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Gastroenterology ; 167(2): 281-297, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38492894

RESUMO

BACKGROUND & AIMS: Because pancreatic cancer responds poorly to chemotherapy and immunotherapy, it is necessary to identify novel targets and compounds to overcome resistance to treatment. METHODS: This study analyzed genomic single nucleotide polymorphism sequencing, single-cell RNA sequencing, and spatial transcriptomics. Ehf-knockout mice, KPC (LSL-KrasG12D/+, LSL-Trp53R172H/+ and Pdx1-Cre) mice, CD45.1+ BALB/C nude mice, and CD34+ humanized mice were also used as subjects. Multiplexed immunohistochemistry and flow cytometry were performed to investigate the proportion of tumor-infiltrated C-X-C motif chemokine receptor 2 (CXCR2)+ neutrophils. In addition, multiplexed cytokines assays and chromatin immunoprecipitation assays were used to examine the mechanism. RESULTS: The TP53 mutation-mediated loss of tumoral EHF increased the recruitment of CXCR2+ neutrophils, modulated their spatial distribution, and further induced chemo- and immunotherapy resistance in clinical cohorts and preclinical syngeneic mice models. Mechanistically, EHF deficiency induced C-X-C motif chemokine ligand 1 (CXCL1) transcription to enhance in vitro and in vivo CXCR2+ neutrophils migration. Moreover, CXCL1 or CXCR2 blockade completely abolished the effect, indicating that EHF regulated CXCR2+ neutrophils migration in a CXCL1-CXCR2-dependent manner. The depletion of CXCR2+ neutrophils also blocked the in vivo effects of EHF deficiency on chemotherapy and immunotherapy resistance. The single-cell RNA-sequencing results of PDAC treated with Nifurtimox highlighted the therapeutic significance of Nifurtimox by elevating the expression of tumoral EHF and decreasing the weightage of CXCL1-CXCR2 pathway within the microenvironment. Importantly, by simultaneously inhibiting the JAK1/STAT1 pathway, it could significantly suppress the recruitment and function of CXCR2+ neutrophils, further sensitizing PDAC to chemotherapy and immunotherapies. CONCLUSIONS: The study demonstrated the role of EHF in the recruitment of CXCR2+ neutrophils and the promising role of Nifurtimox in sensitizing pancreatic cancer to chemotherapy and immunotherapy.


Assuntos
Quimiocina CXCL1 , Resistencia a Medicamentos Antineoplásicos , Infiltração de Neutrófilos , Neutrófilos , Neoplasias Pancreáticas , Receptores de Interleucina-8B , Animais , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Humanos , Infiltração de Neutrófilos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Camundongos , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Linhagem Celular Tumoral , Camundongos Knockout , Microambiente Tumoral , Imunoterapia/métodos , Camundongos Nus , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Camundongos Endogâmicos BALB C , Antineoplásicos/farmacologia , Transdução de Sinais , Mutação , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia
2.
J Am Chem Soc ; 146(29): 20045-20058, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39001877

RESUMO

G protein-coupled receptor (GPCR) structural studies with in-solution spectroscopic approaches have offered distinctive insights into GPCR activation and signaling that highly complement those yielded from structural snapshots by crystallography or cryo-EM. While most current spectroscopic approaches allow for probing structural changes at selected residues or loop regions, they are not suitable for capturing a holistic view of GPCR conformational rearrangements across multiple domains. Herein, we develop an approach based on limited proteolysis mass spectrometry (LiP-MS) to simultaneously monitor conformational alterations of a large number of residues spanning both flexible loops and structured transmembrane domains for a given GPCR. To benchmark LiP-MS for GPCR conformational profiling, we studied the adenosine 2A receptor (A2AR) in response to different ligand binding (agonist/antagonist/allosteric modulators) and G protein coupling. Systematic and residue-resolved profiling of A2AR conformational rearrangements by LiP-MS precisely captures structural mechanisms in multiple domains underlying ligand engagement, receptor activation, and allostery, and may also reflect local conformational flexibility. Furthermore, these residue-resolution structural fingerprints of the A2AR protein allow us to readily classify ligands of different pharmacology and distinguish the G protein-coupled state. Thus, our study provides a new structural MS approach that would be generalizable to characterizing conformational transition and plasticity for challenging integral membrane proteins.


Assuntos
Espectrometria de Massas , Conformação Proteica , Receptor A2A de Adenosina , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , Humanos , Ligantes , Modelos Moleculares , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
3.
Opt Lett ; 49(15): 4401-4404, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090944

RESUMO

In this work, we unveil a novel, to the best of our knowledge, AI-based design method (AIDN1) specifically developed for photonic crystal resonator designs, capable of handling complex designs with over 10 degrees of freedom (DoFs) and considering practical fabrication uncertainties to minimize the common simulation-to-reality (sim2real) gap. Especially, we introduce an ultrashort (<5 µm) curved nanobeam resonator, which obtains an ultrahigh theoretical quality factor (Q-factor) of 2 × 107 and maintains a theoretical Q-factor above 105 even under high fabrication variations. Importantly, we emphasize that AIDN1 is generalizable and our work serves as a solid foundation for future laser fabrication endeavors beyond the realm of ultrashort 1D photonic crystal (PhC) resonators.

4.
BMC Ophthalmol ; 24(1): 195, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664615

RESUMO

BACKGROUND: Analyzing the glaucoma burden in "Belt and Road" (B&R) countries based on age, gender, and risk factors from 1990 to 2019 in order to provide evidence for future prevention strategies. METHODS: We applied global burden of disease(GBD) 2019 to compare glaucoma prevalence and Years lived with disabilities (YLDs) from 1990 to 2019 in the B&R countries. Trends of disease burden between 1990 and 2019 were evaluated using the average annual percent change and the 95% uncertainty interval (UI) were reported. RESULTS: From 1990 to 2019, most B&R countries showed a downward trend in age-standardized prevalence and YLDs (all P < 0.05). Additionally, only the age-standardized YLDs in males of Pakistan has a 0.35% increase (95%CI:0.19,0.50,P < 0.001), and most B&R countries has a decline(all P < 0.05) in age-standardized YLDs in every 5 years age group after 45 years old except for Pakistan(45-79 years and > 85 years), Malaysia(75-84 years), Brunei Darussalam(45-49 years), Afghanistan(70-79 years). Finally, in all Central Asian countries, the age-standardized YLDs due to glaucoma caused by fasting hyperglycemia demonstrated have an increase between 1990 and 2019 (all P < 0.05), but Armenia and Mongolia have a decrease between 2010 and 2019 (all P < 0.05). CONCLUSION: The prevalence of glaucoma continues to pose a significant burden across regions, ages, and genders in countries along the "B&R". It is imperative for the "B&R" nations to enhance health cooperation in order to collaboratively tackle the challenges associated with glaucoma.


Assuntos
Glaucoma , Humanos , Glaucoma/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Prevalência , Idoso de 80 Anos ou mais , Adulto , Fatores de Risco , Distribuição por Idade , Carga Global da Doença/tendências , Distribuição por Sexo , Adulto Jovem , Adolescente , Efeitos Psicossociais da Doença , Anos de Vida Ajustados por Deficiência/tendências
5.
Biomed Chromatogr ; 38(9): e5932, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38922712

RESUMO

Abnormal relaxation and contraction of intestinal smooth muscle can cause various intestinal diseases. Diarrhea is a common and important public health problem worldwide in epidemiology. Zingiber officinale Roscoe (fresh ginger) has been found to treat diarrhea, but the material basis and mechanism of action that inhibits intestinal peristalsis remain unclear. Metabolomics and serum pharmacology were used to identify differential metabolites, metabolic pathways, and pharmacodynamic substances, and were then combined with network pharmacology to explore the potential targets of ginger that inhibit intestinal peristalsis during diarrhea treatment, and the targets identified were verified using molecular docking and molecular dynamic simulation. We found that 25 active components of ginger (the six most relevant components), 35 potential key targets (three core targets), 40 differential metabolites (four key metabolites), and four major metabolic pathways were involved in the process by which ginger inhibits intestinal peristalsis during diarrhea treatment. This study reveals the complex mechanism of action and pharmacodynamic material basis of ginger in the inhibition of intestinal peristalsis, and this information helps in the development of new Chinese medicine to treat diarrhea and lays the foundation for the clinical application of ginger.


Assuntos
Metabolômica , Simulação de Acoplamento Molecular , Farmacologia em Rede , Peristaltismo , Zingiber officinale , Zingiber officinale/química , Metabolômica/métodos , Animais , Peristaltismo/efeitos dos fármacos , Masculino , Diarreia/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Metaboloma/efeitos dos fármacos , Metaboloma/fisiologia , Intestinos/efeitos dos fármacos
6.
ACS Nano ; 18(12): 9082-9091, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466951

RESUMO

On-surface dehalogenative reactions have been promising in the construction of nanostructures with diverse morphologies and intriguing electronic properties, while halogen (X), as the main byproduct, often impedes the formation of extended nanostructures and property characterization, and the reaction usually requires high C-X activation temperatures, especially on relatively inert Au(111). Enormous efforts in precursor design, halogen-to-halide conversion, and the introduction of extrinsic metal atoms have been devoted to either eliminating dissociated halogens or reducing reaction barriers. However, it is still challenging to separate halogens from molecular systems while facilitating C-X activation under mild conditions. Herein, a versatile halogen separation strategy has been developed based on the introduction of extrinsic sodium (Na) into dehalogenative reactions on Au(111) as model systems that both isolates the dissociated halogens and facilitates the C-Br activation under mild conditions. Moreover, the combination of scanning tunneling microscopy imaging and density functional theory calculations reveals the formation of sodium halides (NaX) from halogens in these separation processes as well as the reduction in reaction temperatures and barriers, demonstrating the versatility of extrinsic sodium as an effective "cleaner" and "dehalogenator" of surface halogens. Our study demonstrates a valuable strategy to facilitate the on-surface dehalogenative reactions, which will assist in the precise fabrication of low-dimensional carbon nanostructures.

7.
Exp Gerontol ; 195: 112545, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39154868

RESUMO

BACKGROUND: The association between frailty and sex hormone-binding globulin (SHBG) or insulin-like growth factor-1(IGF-1) levels demonstrates sex differences with inconsistent conclusions. This study aims to explore the causal relationship between frailty and SHBG or IGF-1 levels through bidirectional Mendelian randomization (MR). METHODS: We conducted two-sample bidirectional sex-stratified MR analyses using summary-level data from genome-wide association studies (GWASs) to examine the causal relationship between frailty and IGF-1 or SHBG levels, as measured by frailty index (FI) and frailty phenotype (FP). We use the random-effects inverse-variance weighted (IVW), weighted median, MR-Egger, MR-Egger intercept, and leave-one-out approaches. RESULT: The relationship between frailty and SHBG or IGF-1 levels is inversely related, with a significant decrease in SHBG levels in females. Specifically, SHBG levels significantly decrease with FI (ß = -5.49; 95 % CI: -9.67 to -1.32; FDR = 0.02) and more pronounced with FP (ß = -10.14; 95 % CI: -16.16 to -4.13; FDR = 0.01), as determined by the IVW approach. However, reverse analysis shows no significant effect of IGF-1 or SHBG levels on either FI or FP (p > 0.05). CONCLUSION: Our study indicates a negative correlation between frailty and the levels of SHBG and IGF-1. It is suggested that further research is required to establish cut-off values for SHBG and IGF-1 levels in the frailty population. This is particularly important for females at higher risk, such as those undergoing menopause, to enable comprehensive assessment and early prevention efforts. While the findings imply that reduced IGF-1 and SHBG levels may not directly contribute to frailty, it is important not to overlook the underlying mechanisms through which they may indirectly influence frailty.

8.
Biochim Biophys Acta Mol Basis Dis ; : 167467, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159699

RESUMO

Myocardial fibrosis (MF) is characterized by the excessive deposition of extracellular matrix within the heart, often following a cardiovascular insult. SHARPIN, a protein implicated in fibrosis, has emerged as a potential therapeutic target. This study aimed to elucidate the molecular mechanisms of SHARPIN in MF and to investigate the influence of its single nucleotide polymorphism (SNP), rs117299156, on myocardial infarction (MI) patients. A mouse model of Angiotensin II (AngII)-induced MF was established in SHARPIN heterozygous (SHARPIN+/-) and wild-type mice. Adult mouse cardiac fibroblasts (CFs) were isolated and subjected to adenovirus-encapsulated SHARPIN short hairpin RNA (shRNA) infection. Transcriptomic analysis was performed on CFs from SHARPIN+/- and wild-type (WT) mice, complemented by single-cell sequencing data from human cardiac tissues. Additionally, the association between the rs117299156 mutation and cardiovascular events in MI patients was assessed. Our findings indicate that SHARPIN is predominantly expressed in CFs and is upregulated in fibrotic myocardium. Partial knockdown of SHARPIN in murine hearts mitigated AngII-induced cardiac dysfunction and MF. Furthermore, reduced SHARPIN expression in CFs attenuated TGF-ß1-induced collagen synthesis, cell proliferation, and myofibroblast transformation. Notably, MI patients carrying the rs117299156_C allele exhibited a reduced incidence of stroke events compared to those without the mutation.

9.
Int J Biol Macromol ; 260(Pt 2): 129598, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253142

RESUMO

Bacterial infections have always been a major threat to public health, and the development of effective antibacterial substances from natural polymers is crucial. 2-Aminoisonicotinic acid (AN) was grafted onto chitosan by 1-ethyl-(3-dimethylaminopropyl)carbodiimide-mediated coupling reactions, and then modified chitosan­iodine (CSAN-I) complexes were prepared by solvent-assisted grinding. The samples were characterized using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, proton nuclear magnetic resonance spectroscopy, and X-ray diffraction, confirming that CSAN-I complexes had been successfully prepared. Thermogravimetric (TG) analysis indicated that the chemical modification of chitosan and iodine complexation reduced the thermal stability; X-ray photoelectron spectroscopy (XPS) analysis revealed that 81 % of the iodine in CSAN-I complex was in the form of triiodide ions. The iodine contents of three CSAN-I complexes (CSAN-I-1, CSAN-I-2 and CSAN-I-3) were 1.59 ± 0.22 %, 3.18 ± 0.26 %, and 5.56 ± 0.41 %, respectively. The antibacterial effects were evaluated in vitro, and the results indicated that CSAN-I complexes had strong antibacterial activities against both E. coli and S. aureus. In particular, CSAN-I-3 exhibited the best antibacterial effect. In addition, CSAN-I-3 was nontoxic to L929 cells with good cytocompatibility. Therefore, CSAN-I complexes can be considered as promising candidates for wound management in clinical applications.


Assuntos
Quitosana , Iodo , Quitosana/farmacologia , Quitosana/química , Escherichia coli , Staphylococcus aureus , Iodo/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Testes de Sensibilidade Microbiana
10.
World Neurosurg ; 183: e825-e837, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38216032

RESUMO

BACKGROUND: The main treatment of low-grade glioma (LGG) is still surgical resection followed by radiotherapy and/or chemotherapy, which has certain limitations, including side effects and drug resistance. Immunotherapy is a promising treatment for LGG, but it is generally hindered by the tumor microenvironment with the limited expression of tumor antigens. METHODS: We integrated RNA sequencing data sets and clinical information and conducted consistent cluster analysis to explore the most suitable patients for immune checkpoint therapy. Gene set enrichment analysis, UMAP analysis, mutation correlation analysis, TIMER analysis, and TIDE analysis were used to identify the immune characteristics of 3 immune subtypes and the feasibility of 5 antigens as immune checkpoint markers. RESULTS: We analyzed the isolation and mutation of homologous recombination repair genes (HRR) of the 3 immune subtypes, and the HRR genes of the 3 subtypes were obviously segregated. Among them, the IS2 subtype has a large number of HRR gene mutations, which increases the immunogenicity of tumors-this is consistent with the results of tumor mutation load analysis of 3 immune subtypes. Then we evaluated the immune cell infiltration of immune subtypes and found that IS2 and IS3 subtypes were rich in immune cells. It is worth noting that there are many Treg cells and NK cells in the IS1 subtype. In addition, when analyzing the immune checkpoint gene expression of the 3 subtypes, we found that they were upregulated most in IS2 subtypes compared with other subtypes. Then when we further confirmed the role of immune-related genes in LGG; through TIDE analysis and TISIDB analysis, we obtained 5 markers that can predict the efficacy of ICB in patients with LGG. In addition, we confirmed that they were associated with poor prognosis through survival analysis. CONCLUSIONS: We obtained 3 reliable immune subtypes, and patients with the IS2 subtype are suitable for immunotherapy, in which NAMPT, SLC11A1, TNC, VIM, and SPP1 are predictive panel markers for ICB in the LGG group. Our findings provide a rationale for immunotherapy selection and prediction of patient prognosis in LGG patients.


Assuntos
Glioma , Imunoterapia , Humanos , Glioma/genética , Glioma/terapia , Mutação/genética , Prognóstico , Microambiente Tumoral/genética
11.
ACS Nano ; 18(22): 14640-14649, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38761149

RESUMO

The control of reaction selectivity is of great interest in chemistry and depends crucially on the revelation of key influencing factors. Based on well-defined molecule-substrate model systems, various influencing factors have been elucidated, focusing primarily on the molecular precursors and the underlying substrates themselves, while interfacial properties have recently been shown to be essential as well. However, the influence of molecular chemisorption direction on reaction selectivity, as a subtle interplay between molecules and underlying substrates, remains elusive. In this work, by a combination of scanning tunneling microscopy imaging and density functional theory calculations, we report the influence of molecular chemisorption direction on the reaction selectivity of two types of dehalogenative coupling on Au(111), i.e., polymerization and cyclization, at the atomic level. The diffusion step of a reactive dehalogenated intermediate in two different chemisorption directions was theoretically revealed to be the key to determining the corresponding reaction selectivity. Our results highlight the important role of molecular chemisorption directions in regulating the on-surface dehalogenative coupling reaction pathways and products, which provides fundamental insights into the control of reaction selectivity by exploiting some subtle interfacial parameters in on-surface reactions for the fabrication of target low-dimensional carbon nanostructures.

12.
Adv Mater ; : e2312825, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39011981

RESUMO

In the dynamic landscape of Artificial Intelligence (AI), two notable phenomena are becoming predominant: the exponential growth of large AI model sizes and the explosion of massive amount of data. Meanwhile, scientific research such as quantum computing and protein synthesis increasingly demand higher computing capacities. As the Moore's Law approaches its terminus, there is an urgent need for alternative computing paradigms that satisfy this growing computing demand and break through the barrier of the von Neumann model. Neuromorphic computing, inspired by the mechanism and functionality of human brains, uses physical artificial neurons to do computations and is drawing widespread attention. This review studies the expansion of optoelectronic devices on photonic integration platforms that has led to significant growth in photonic computing, where photonic integrated circuits (PICs) have enabled ultrafast artificial neural networks (ANN) with sub-nanosecond latencies, low heat dissipation, and high parallelism. In particular, various technologies and devices employed in neuromorphic photonic AI accelerators, spanning from traditional optics to PCSEL lasers are examined. Lastly, it is recognized that existing neuromorphic technologies encounter obstacles in meeting the peta-level computing speed and energy efficiency threshold, and potential approaches in new devices, fabrication, materials, and integration to drive innovation are also explored. As the current challenges and barriers in cost, scalability, footprint, and computing capacity are resolved one-by-one, photonic neuromorphic systems are bound to co-exist with, if not replace, conventional electronic computers and transform the landscape of AI and scientific computing in the foreseeable future.

13.
Bioact Mater ; 40: 244-260, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38973990

RESUMO

Osteoid plays a crucial role in directing cell behavior and osteogenesis through its unique characteristics, including viscoelasticity and liquid crystal (LC) state. Thus, integrating osteoid-like features into 3D printing scaffolds proves to be a promising approach for personalized bone repair. Despite extensive research on viscoelasticity, the role of LC state in bone repair has been largely overlooked due to the scarcity of suitable LC materials. Moreover, the intricate interplay between LC state and viscoelasticity in osteogenesis remains poorly understood. Here, we developed innovative hydrogel scaffolds with osteoid-like LC state and viscoelasticity using digital light processing with a custom LC ink. By utilizing these LC scaffolds as 3D research models, we discovered that LC state mediates high protein clustering to expose accessible RGD motifs to trigger cell-protein interactions and osteogenic differentiation, while viscoelasticity operates via mechanotransduction pathways. Additionally, our investigation revealed a synergistic effect between LC state and viscoelasticity, amplifying cell-protein interactions and osteogenic mechanotransduction processes. Furthermore, the interesting mechanochromic response observed in the LC hydrogel scaffolds suggests their potential application in mechanosensing. Our findings shed light on the mechanisms and synergistic effects of LC state and viscoelasticity in osteoid on osteogenesis, offering valuable insights for the biomimetic design of bone repair scaffolds.

14.
Hortic Res ; 11(8): uhae170, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135729

RESUMO

Panax notoginseng is a famous perennial herb widely used as material for medicine and health-care food. Due to its various therapeutic effects, research work on P. notoginseng has rapidly increased in recent years, urging a comprehensive review of research progress on this important medicinal plant. Here, we summarize the latest studies on the representative bioactive constituents of P. notoginseng and their multiple pharmacological effects, like cardiovascular protection, anti-tumor, and immunomodulatory activities. More importantly, we emphasize the biosynthesis and regulation of ginsenosides, which are the main bioactive ingredients of P. notoginseng. Key enzymes and transcription factors (TFs) involved in the biosynthesis of ginsenosides are reviewed, including diverse CYP450s, UGTs, bHLH, and ERF TFs. We also construct a transcriptional regulatory network based on multi-omics data and predicted candidate TFs mediating the biosynthesis of ginsenosides. Finally, the current three major biotechnological approaches for ginsenoside production are highlighted. This review covers advances in the past decades, providing insights into quality evaluation and perspectives for the rational utilization and development of P. notoginseng resources. Modern omics technologies facilitate the exploration of the molecular mechanisms of ginsenoside biosynthesis, which is crucial to the breeding of novel P. notoginseng varieties. The identification of functional enzymes for biosynthesizing ginsenosides will lead to the formulation of potential strategies for the efficient and large-scale production of specific ginsenosides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA