Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402338, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924259

RESUMO

A frozen-temperature (below -28 °C) laser tuning way is developed to optimize metal halide perovskite (MHP)'s stability and opto-electronic properties, for emitter, photovoltaic and detector applications. Here freezing can adjust the competitive laser irradiation effects between damaging and annealing/repairing. And the ligand shells on MHP surface, which are widely present for many MHP materials, can be frozen and act as transparent solid templates for MHP's re-crystallization/re-growth during the laser tuning. With model samples of different types of CsPbBr3 nanocube arrays,an attempt is made to turn the dominant exposure facet from low-energy [100] facet to high-energy [111], [-211], [113] and [210] ones respectively; selectively removing the surface impurities and defects of CsPbBr3 nanocubes to enhance the irradiation durability by 101 times; and quickly (tens of seconds) modifying a Ruddlesden-Popper (RP) boundary into another type of boundary like twinning, and so on. The laser tuning mechanism is revealed by an innovative in situ cryo-transmission electron microscope (cryo-TEM) exploration at atomic resolution.

2.
J Chem Phys ; 160(3)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38235798

RESUMO

MnBi2Te4 can generate a variety of exotic topological quantum states, which are closely related to its special structure. We conduct comprehensive multiple-cycle high-pressure research on MnBi2Te4 by using a diamond anvil cell to study its phase transition behaviors under high pressure. As observed, when the pressure does not exceed 15 GPa, the material undergoes an irreversible metal-semiconductor-metal transition, whereas when the pressure exceeds 17 GPa, the layered structure is damaged and becomes irreversibly amorphous due to the lattice distortion caused by compression, but it is not completely amorphous, which presents some nano-sized grains after decompression. Our investigation vividly reveals the phase transition behaviors of MnBi2Te4 under high pressure cycling and paves the experimental way to find topological phases under high pressure.

3.
J Am Chem Soc ; 145(31): 17087-17095, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37523458

RESUMO

Transition-metal-catalyzed [4 + 1] reaction of dienes and carbon monoxide (CO) is the most straightforward and easily envisioned cyclization for the synthesis of five-membered carbocycles, which are ubiquitously found in natural products and functional molecules. Unfortunately, no test of this reaction was reported, and consequently, chemists do not know whether such kind of reaction works or not. Herein, we report that the [4 + 1] reaction of common dienes and CO cannot work, at least under the catalysis of [Rh(cod)Cl]2. However, using cyclopropyl-capped dienes (also named allylidenecyclopropanes) as substrates, the corresponding [4 + 1] reaction with CO proceeds smoothly in the presence of [Rh(cod)Cl]2. This [4 + 1] reaction, with a broad scope, provides efficient access to five-membered carbocyclic compounds of spiro[2.4]hept-6-en-4-ones. The [4 + 1] cycloadducts can be further transformed into other molecules by using the unique chemistry of cyclopropyl groups present in these molecules. The mechanism of this [4 + 1] reaction has been investigated by quantum chemical calculations, uncovering that cyclopropyl-capped dienes are strained dienes and the oxidative cyclization step in the [4 + 1] catalytic cycle can release this (angular) strain both kinetically and thermodynamically. The strain release in this step then propagates to all followed CO coordination/CO insertion/reductive elimination steps in the [4 + 1] catalytic cycle, helping the realization of this cycloaddition reaction. In contrast, common dienes (including cyclobutyl-capped dienes) do not have such advantages and their [4 + 1] reaction suffers from energy penalty in all steps involved in the [4 + 1] catalytic cycle. The reactivity of ene-allenes for the [4 + 1] reaction with CO is also discussed.

4.
Nanotechnology ; 35(5)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37871598

RESUMO

The generation of disorder often gives rise to profound and irreversible physical phenomena. Here, we explore the influence of disorder on the superconducting properties of In2Te3through comprehensive high-pressure investigations. Building upon previous findings, we investigated the progressive suppression of superconductivity in In2Te3during the depressurization process: the increased disorder that ultimately leads to the complete disappearance of the superconducting state. Simultaneously, our high-pressure x-ray diffraction analysis reveals an irreversible structural phase transition. Furthermore, microstructure analysis using transmission electron microscopy clearly demonstrates both grain refinement and a substantial enhancement of disorder. These findings not only provide valuable insights into the mechanism by which disorder suppresses superconductivity, but also offer guidance for future advancements in the fabrication of atmospheric-pressure superconductors.

5.
Inorg Chem ; 61(38): 15166-15174, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36084300

RESUMO

Postsynthetic modification (PSM) of the metal-organic framework (MOF) has been demonstrated to be an effective strategy to enhance performance. In this particular work, the anion framework Mn-MOF {[Mn3O(H2O)3(HTC)]2-} (HTC6- = (5'-(3,5-dicarboxyphenyl)-[1,1':3',1″-terphenyl]-3,3″,5,5″-tetracarboxylate] was obtained, and NH2(CH3)2+ ions were filled within the pores to balance the charge. In order to release the internal pores of Mn-MOF, the trivalent Fe(III) was introduced instead of Mn(II) nodes, resulting in the porous Mn1-xFex-MOF, and the NH2(CH3)2+ ions were simultaneously deported from the pores. The content of Fe(III) in Mn1-xFex-MOF was highly dependent on the concentration of Fe(III) solution, and the maximum could be up to Mn0.05Fe0.95-MOF with a BET surface area of 1209.457 m2 g-1. Compared to the amorphization of dense Mn-MOF at 0.8 GPa in a diamond anvil cell, the mechanical stability of porous Mn0.05Fe0.95-MOF has been dramatically enhanced, and the framework integrity could be maintained up to 16.5 GPa. The proton conductivity for the Mn1-xFex-MOF series was also investigated, where Mn0.93Fe0.07-MOF showed the best performance of 1.47 × 10-2 S cm-1 under 70 °C and 98% RH due to the onset of reversed charge from the anionic framework to cationic framework and the formation of the most compact hydrogen bonding net. This work has not only provided an example for the PSM strategy but also illustrated that the versatile functionalities of MOF materials were mainly ascribed to the tunable porosity.

6.
Sensors (Basel) ; 22(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408047

RESUMO

With the development of the Internet of Things for smart grid, the requirement for appliance monitoring has become an important topic. The first and most important step in appliance monitoring is to identify the type of appliance. Most of the existing appliance identification platforms are cloud based, thus they consume large computing resources and memory. Therefore, it is necessary to explore an edge identification platform with a low cost. In this work, a novel appliance identification edge platform for data gathering, capturing and labeling is proposed. Experiments show that this platform can achieve an average appliance identification accuracy of 98.5% and improve the accuracy of non-intrusive load disaggregation algorithms.


Assuntos
Algoritmos
7.
Inorg Chem ; 60(7): 4945-4956, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33689336

RESUMO

The elaborately designed π-electron-rich fluorescent ligand 1,4-bis(1-carboxymethylene-4-imidazolyl)benzene (H2L), possessing bifunctional groups including the carboxylate groups (building units) and 4-imidazoyl groups (N-donor potential active sites) has been employed to construct fluorescent coordination polymers. A luminescent sensor, namely [Cd(L)(phen)2]·5H2O (1), was obtained, which has a one-dimensional structure. The fluorescent material shows a blue emission maximum at 457 nm with a luminescence lifetime of 488 ns and a quantum yield (QY) of 4.56%. Significantly, 1 serves as a promising multiresponsive luminescent sensor to detect trace nitroaromatic compounds (NACs) with the limits of detection (LOD) of 7.21 × 10-8, 1.85 × 10-5, and 1.15 × 10-5 mol/L for 2-nitrophenol (2-NP), 3-nitrophenol (3-NP), and 4-nitrophenol (4-NP), respectively. Furthermore, CP 1 exhibits fluorescent turn-off and turn-on sensing behavior for Fe3+ and Al3+ metal ions with trace amounts of 1.05 × 10-7 and 1.13 × 10-7 mol/L, respectively. Experimental methods and theoretical calculations were employed to elucidate the sensing mechanism in detail.

8.
Inorg Chem ; 59(18): 13326-13334, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32862642

RESUMO

Metal-organic frameworks (MOFs) with cuprous-halide-aggregates have shown superiority as organic LED (OLED) and semiconductor materials, while engineering MOF flexibility by involving the expansion of cuprous aggregates remains a great challenge. In this particular work, a dissolution-recrystallization structural transformation (DRST) with the dramatic growth of CuI-I aggregates, from 2D NJNU-100 to 3D NJNU-101 has been successfully realized. The unsaturated coordination nodes (2-positional nitrogen atoms) in NJNU-100 have been demonstrated to be the driven force for DRST to NJNU-101 via the formation of coordination bonds. The structural transformation process was irreversible and observed with optical microscopy and powder XRD. The expansion of CuI-I aggregates was also computational simulated accompanying with the rotation of the neutral tripodal TTTMB ligand (1,3,5-tris(1,2,4-triazol-1-ylmethyl)-2,4,6-trimethylbenzene) and the reduction of CuII to CuI. Moreover, the intermediate product NJNU-102 was captured by adding the planar molecular anthrancene to shut down the reaction, where only partial 2-positional nitrogen atoms coordinated to the aggregates and the anthrancene was oxidized to anthraquinone. NJNU-102 has further confirmed that DRST involved the breakage and recombination of coordination bonds and the electron transfer. NJNU-100 and NJNU-101 could be applied as semiconductor and OLED materials. This work has provided insights for crystal engineering, especially for the construction of the CuIxXy aggregates, and illustrated that DRST could be controlled with a rational design (as the unsaturated coordination modes).

9.
JACS Au ; 4(5): 2050-2057, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38818063

RESUMO

Luminescent chiral Tb-MOF microcrystals with the Tb2(COO)4 subunit indicated strong green mechano-luminescence under compression. Furthermore, piezofluorochromic behavior in the diamond anvil cell was observed, with the intensity tendency of decreasing-increasing-decreasing and a shortened lifetime upon compression, due to the reversible stretchable Tb-Tb interactions. The Tb-Tb distance upon compression was refined through in situ high-pressure X-ray absorption spectra, which was consistent with the tendency of the piezofluorochromic intensity. In situ high-pressure UV-vis absorption spectra, Fourier transform infrared spectra, and powder X-ray diffraction demonstrated the full recovery of Tb-MOF after over 10 GPa compressions due to the semiflexible ligand. This work not only provided an ultrastable Tb-MOF but also illustrated the relationship of the piezofluorochromic behavior with the detailed structural transformation for the first time.

10.
J Phys Chem Lett ; 15(5): 1449-1454, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38291988

RESUMO

Although the NiS exhibits the most widely adjustable metal-to-insulator (MIT) properties among the chalcogenides, the mechanisms, with respect to the regulations in their critical temperatures (TMIT), are yet unclear. Herein, we demonstrate the overlooked role associated with the structurally tetragonal distortion in elevating the TMIT of NiS; this is in distinct contrast to the previously expected hybridization and bandwidth regulations that usually reduces TMIT. Compared to the perspective of structure distortions, the orbital hybridization and band regulation of NiS are ∼19 times more effective adjustment in TMIT. As a result, the respective abruptions in both the electrical and thermal resistive switches across the TMIT of NiS can be better preserved in the low-temperature range (<273 K), shedding light on their optimum usage at cryogenic temperatures.

11.
Bioinspir Biomim ; 17(5)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35767980

RESUMO

The study of natural cellular materials offers valuable insights into the superior properties and functions underlying their unique structure and benefits the design and fabrication of advanced biomimetic materials. In this study, we present a systematic investigation of the mechanical behavior of fresh and oven-dried pomelo peels. Density measurements revealed the gradient structure of the pomelo peel, which contributed to its mechanical properties. Step-by-step drying revealed two types of water in the peel. Both uniaxial compression and low-strain hysteresis tests were conducted, and the results showed that fresh pomelo peel exhibits soft elastomer-like behavior, while dried pomelo peel behaves more like conventional synthetic polymer foam. Compared to fresh pomelo peel, dried peel samples showed higher compressive modulus and energy loss in 6, 8 and 10% strain hysteresis tests. The rehydration process was studied using hysteresis tests at three different strains. In addition, multilayer gradient EO/EO and LDPE/LDPE film/foams with 16 alternating layers were produced using the microlayer coextrusion technique. The morphology and mechanical properties were examined and indicated great potential for biomimicking the structure and properties of pomelo peel.


Assuntos
Frutas , Polietileno , Polietileno/análise , Estresse Mecânico , Água
12.
Ultrasonics ; 126: 106823, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35973332

RESUMO

Ultrafast ultrasound imaging can achieve high frame rate by emitting planewave (PW). However, the image quality is drastically degraded in comparison with traditional scanline focused imaging. Using adaptive beamforming techniques can improve image quality at cost of real-time performance. In this work, an adaptive beamforming based on minimum variance (ABF-MV) with deep neural network (DNN) is proposed to improve the image performance and to speed up the beamforming process of ultrafast ultrasound imaging. In particular, a DNN, with a combination architecture of fully-connected network (FCN) and convolutional autoencoder (CAE), is trained with channel radio-frequency (RF) data as input while minimum variance (MV) beamformed data as ground truth. Conventional delay-and-sum (DAS) beamformer and MV beamformer are utilized for comparison to evaluate the performance of the proposed method with simulations, phantom experiments, and in-vivo experiments. The results show that the proposed method can achieve superior resolution and contrast performance, compared with DAS. Moreover, it is remarkable that both in theoretical analysis and implementation, our proposed method has comparable image quality, lower computational complexity, and faster frame rate, compared with MV. In conclusion, the proposed method has the potential to be deployed in ultrafast ultrasound imaging systems in terms of imaging performance and processing time.


Assuntos
Processamento de Imagem Assistida por Computador , Processamento de Sinais Assistido por Computador , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Imagens de Fantasmas , Ultrassonografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA