Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(10): 2092-2110.e23, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172563

RESUMO

The third and fourth weeks of gestation in primates are marked by several developmental milestones, including gastrulation and the formation of organ primordia. However, our understanding of this period is limited due to restricted access to in vivo embryos. To address this gap, we developed an embedded 3D culture system that allows for the extended ex utero culture of cynomolgus monkey embryos for up to 25 days post-fertilization. Morphological, histological, and single-cell RNA-sequencing analyses demonstrate that ex utero cultured monkey embryos largely recapitulated key events of in vivo development. With this platform, we were able to delineate lineage trajectories and genetic programs involved in neural induction, lateral plate mesoderm differentiation, yolk sac hematopoiesis, primitive gut, and primordial germ-cell-like cell development in monkeys. Our embedded 3D culture system provides a robust and reproducible platform for growing monkey embryos from blastocysts to early organogenesis and studying primate embryogenesis ex utero.


Assuntos
Embrião de Mamíferos , Desenvolvimento Embrionário , Animais , Macaca fascicularis , Blastocisto , Organogênese , Primatas
2.
Nat Methods ; 19(5): 613-619, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35545715

RESUMO

Light-sheet microscopy has emerged as the preferred means for high-throughput volumetric imaging of cleared tissues. However, there is a need for a flexible system that can address imaging applications with varied requirements in terms of resolution, sample size, tissue-clearing protocol, and transparent sample-holder material. Here, we present a 'hybrid' system that combines a unique non-orthogonal dual-objective and conventional (orthogonal) open-top light-sheet (OTLS) architecture for versatile multi-scale volumetric imaging. We demonstrate efficient screening and targeted sub-micrometer imaging of sparse axons within an intact, cleared mouse brain. The same system enables high-throughput automated imaging of multiple specimens, as spotlighted by a quantitative multi-scale analysis of brain metastases. Compared with existing academic and commercial light-sheet microscopy systems, our hybrid OTLS system provides a unique combination of versatility and performance necessary to satisfy the diverse requirements of a growing number of cleared-tissue imaging applications.


Assuntos
Microscopia , Animais , Camundongos , Microscopia/métodos
3.
J Clin Microbiol ; 62(7): e0015424, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38809033

RESUMO

The increasing use of ceftazidime-avibactam has led to the emergence of a wide range of ceftazidime-avibactam-resistant blaKPC-2 variants. Particularly, the conventional carbapenemase phenotypic assay exhibited a high false-negative rate for KPC-2 variants. In this study, three colloidal gold immunoassays, including the Gold Mountainriver CGI test, Dynamiker CGI test and NG-Test CARBA5, and GeneXpert Carba-R, were used to detect the presence of KPC-2 carbapenemase and its various variants in 42 Klebsiella pneumoniae strains. These strains covered blaKPC-2 (13/42) and 16 other blaKPC-2 variants including blaKPC-12 (1/42), blaKPC-23 (1/42), blaKPC-25 (1/42), blaKPC-33 (6/42), blaKPC-35 (1/42), blaKPC-44 (1/42), blaKPC-71 (1/42), blaKPC-76 (8/42), blaKPC-78 (1/42), blaKPC-79 (1/42), blaKPC-100 (1/42), blaKPC-127 (1/42), blaKPC-128 (1/42), blaKPC-144 (1/42), blaKPC-157 (2/42), and blaKPC-180 (1/42). For KPC-2 strains, all four assays showed 100% negative percentage agreement (NPA) and 100% positive percentage agreement (PPA) with sequencing results. For all 16 KPC-2 variants, GeneXpert Carba-R showed 100% NPA and 100% PPA, and the three colloidal gold immunoassays showed 100% NPA, while the PPAs of the Gold Mountainriver CGI test, Dynamiker CGI test, and NG-Test CARBA5 were 87.5%, 87.5%, and 68.8%, respectively. We also found a correlation between the mutation site in the amino acid of the variants and false-negative results by colloidal gold immunoassays. In conclusion, the GeneXpert Carba-R has been proven to be a reliable method in detecting KPC-2 and its variants, and the colloidal gold immunoassay tests offer a practical and cost-effective approach for their detection. For the sample with a negative result by a colloidal gold immunoassay test but not matching the drug-resistant phenotype, it is recommended to retest using another type of kit or the GeneXpert Carba-R assay, which can significantly improve the accuracy of detection.


Assuntos
Coloide de Ouro , Infecções por Klebsiella , Klebsiella pneumoniae , beta-Lactamases , beta-Lactamases/genética , Klebsiella pneumoniae/genética , Imunoensaio/métodos , Humanos , Coloide de Ouro/química , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/diagnóstico , Sensibilidade e Especificidade , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana
4.
Cancer Cell Int ; 24(1): 52, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297270

RESUMO

BACKGROUND: A minute fraction of patients stands to derive substantial benefits from immunotherapy, primarily attributable to immune evasion. Our objective was to formulate a predictive signature rooted in genes associated with cytotoxic T lymphocyte evasion (CERGs), with the aim of predicting outcomes and discerning immunotherapeutic response in colorectal cancer (CRC). METHODS: 101 machine learning algorithm combinations were applied to calculate the CERGs prognostic index (CERPI) under the cross-validation framework, and patients with CRC were separated into high- and low-CERPI groups. Relationship between immune cell infiltration levels, immune-related scores, malignant phenotypes and CERPI were further analyzed. Various machine learning methods were used to identify key genes related to both patient survival and immunotherapy benefits. Expression of HOXC6, G0S2, and MX2 was evaluated and the effects of HOXC6 and G0S2 on the viability and migration of a CRC cell line were in-vitro verified. RESULTS: The CERPI demonstrated robust prognostic efficacy in predicting the overall survival of CRC patients, establishing itself as an independent predictor of patient outcomes. The low-CERPI group exhibited elevated levels of immune cell infiltration and lower scores for tumor immune dysfunction and exclusion, indicative of a greater potential benefit from immunotherapy. Moreover, there was a positive correlation between CERPI levels and malignant tumor phenotypes, suggesting that heightened CERPI expression contributes to both the occurrence and progression of tumors. Thirteen key genes were identified, and their expression patterns were scrutinized through the analysis of single-cell datasets. Notably, HOXC6, G0S2, and MX2 exhibited upregulation in both CRC cell lines and tissues. Subsequent knockdown experiments targeting G0S2 and HOXC6 resulted in a significant suppression of CRC cell viability and migration. CONCLUSION: We developed the CERPI for effectively predicting survival and response to immunotherapy in patients, and these results may provide guidance for CRC diagnosis and precise treatment.

5.
Mol Cell Biochem ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332449

RESUMO

The function of mitochondria as a regulator of myocyte calcium homeostasis has been extensively discussed. The aim of the present work was further clarification of the details of modulation of the functional activity of rat cardiac mitochondria by exogenous Ca2+ ions either in the absence or in the presence of the plant flavonoid naringin. Low free Ca2+ concentrations (40-250 nM) effectively inhibited the respiratory activity of heart mitochondria, remaining unaffected the efficacy of oxygen consumption. In the presence of high exogenous Ca2+ ion concentrations (Ca2+ free was 550 µM), we observed a dramatic increase in mitochondrial heterogeneity in size and electron density, which was related to calcium-induced opening of the mitochondrial permeability transition pores (MPTP) and membrane depolarization (Ca2+free ions were from 150 to 750 µM). Naringin partially prevented Ca2+-induced cardiac mitochondrial morphological transformations (200 µM) and dose-dependently inhibited the respiratory activity of mitochondria (10-75 µM) in the absence or in the presence of calcium ions. Our data suggest that naringin (75 µM) promoted membrane potential dissipation, diminishing the potential-dependent accumulation of calcium ions by mitochondria and inhibiting calcium-induced MPTP formation. The modulating effect of the flavonoid on Ca2+-induced mitochondria alterations may be attributed to the weak-acidic nature of the flavonoid and its protonophoric/ionophoric properties. Our results show that the sensitivity of rat heart mitochondria to Ca2+ ions was much lower in the case of MPTP opening and much higher in the case of respiration inhibition as compared to liver mitochondria.

6.
BMC Biol ; 21(1): 202, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775748

RESUMO

BACKGROUND: Brassica napus is an important oilseed crop providing high-quality vegetable oils for human consumption and non-food applications. However, the regulation between embryo and seed coat for the synthesis of oil and phenylpropanoid compounds remains largely unclear. RESULTS: Here, we analyzed the transcriptomes in developing seeds at 2-day intervals from 14 days after flowering (DAF) to 64 DAF. The 26 high-resolution time-course transcriptomes are clearly clustered into five distinct groups from stage I to stage V. A total of 2217 genes including 136 transcription factors, are specifically expressed in the seed and show high temporal specificity by being expressed only at certain stages of seed development. Furthermore, we analyzed the co-expression networks during seed development, which mainly included master regulatory transcription factors, lipid, and phenylpropane metabolism genes. The results show that the phenylpropane pathway is prominent during seed development, and the key enzymes in the phenylpropane metabolic pathway, including TT5, BAN, and the transporter TT19, were directly or indirectly related to many key enzymes and transcription factors involved in oil accumulation. We identified candidate genes that may regulate seed oil content based on the co-expression network analysis combined with correlation analysis of the gene expression with seed oil content and seed coat content. CONCLUSIONS: Overall, these results reveal the transcriptional regulation between lipid and phenylpropane accumulation during B. napus seed development. The established co-expression networks and predicted key factors provide important resources for future studies to reveal the genetic control of oil accumulation in B. napus seeds.


Assuntos
Brassica napus , Transcriptoma , Humanos , Brassica napus/genética , Perfilação da Expressão Gênica , Óleos de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sementes/genética , Regulação da Expressão Gênica de Plantas
7.
J Integr Plant Biol ; 66(3): 484-509, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456625

RESUMO

Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.


Assuntos
Brassica napus , Brassica napus/genética , Locos de Características Quantitativas/genética , Melhoramento Vegetal , Genômica , Fenótipo
8.
Physiol Genomics ; 55(1): 1-15, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314369

RESUMO

Long noncoding RNA (lncRNA) cardiac mesoderm enhancer-associated noncoding RNA (CARMN) is a newly discovered tumor-suppressor lncRNA in cancers. However, its role in cervical cancer (CC) remains elusive. This study was conducted to analyze the molecular mechanism of CARMN in CC cell growth and provide a novel theoretical basis for CC treatment. RT-qPCR and clinical analysis revealed that CARMN and B-cell translocation gene 2 (BTG2) were downregulated, whereas miR-92a-3p was upregulated in CC tissues and cells and their expressions were correlated with clinicopathological characteristics and prognosis. MTT assay, flow cytometry, and Transwell assays revealed that CARMN overexpression reduced proliferation, migration, and invasion and increased apoptosis rate in CC cells. Mechanically, CARMN repressed miR-92a-3p to promote BTG2 transcription. Functional rescue assays revealed that miR-92a-3p overexpression or BTG2 downregulation reversed the inhibitory role of CARMN overexpression in CC cell growth. Western blot analysis elicited that Wnt3a and ß-catenin were elevated in CC cells and CARMN blocked the Wnt/ß-catenin signaling pathway via the miR-92a-3p/BTG2 axis. Overall, our findings demonstrated that CARMN repressed miR-92a-3p to upregulate BTG2 transcription and then blocked the Wnt/ß-catenin signaling pathway, thereby suppressing CC cell growth.


Assuntos
Proteínas Imediatamente Precoces , MicroRNAs , RNA Longo não Codificante , Neoplasias do Colo do Útero , Via de Sinalização Wnt , Feminino , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas Imediatamente Precoces/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Supressoras de Tumor/genética , Neoplasias do Colo do Útero/genética , Via de Sinalização Wnt/genética
9.
Curr Issues Mol Biol ; 45(2): 1681-1692, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36826053

RESUMO

C-type natriuretic peptide (CNP) is highly expressed in male reproductive tissues, such as the epididymis. The aim of this study is to explore the role of CNP in the maturation of rat epididymal spermatozoa. First, the expression levels of CNP and its specific natriuretic peptide receptor-B (NPR-B) were detected in various tissues of rats and epididymis at different stages after birth. Then a castrated rat model was established to analyze the relationship between testosterone and CNP/NPR-B expression in the epididymis. Finally, CNP and different inhibitors (NPR-B inhibitors, cGMP inhibitors) were used to incubate epididymal sperm in vitro to examine sperm mobility and expression of sperm maturation-related factors. The results showed CNP/NPR-B mRNAs were expressed in all tissues of rats, but were extremely highly expressed in male genital ducts (seminal vesicle, prostate and epididymis). The expression of CNP/NPR-B in epididymis was the highest at birth and the fifth week after birth. In the epididymis, CNP/NPR-B were highly expressed in the caput and located in the epididymal epithelial cells. After castration, the expression of CNP/NPR-B decreased sharply and was restored quickly after testosterone supplementation. In vitro, CNP could significantly promote the acquisition of epididymal sperm motility through the NPR-B/cGMP pathway and induce the expression of sperm maturation-related factors (such as Bin1b, Catsper 1, Dnah17, Fertilin). This study shows that CNP plays a role in epididymal sperm maturation. The mechanism of CNP is to promote the acquisition of epididymal sperm fluidity through the NPR-B/cGMP signaling pathway and also to regulate sperm maturation-related genes. Moreover, the expression of CNP/NPR-B was regulated by testosterone.

10.
Plant Cell Environ ; 46(2): 549-566, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36354160

RESUMO

Salt stress is a major limiting factor that severely affects the survival and growth of crops. It is important to understand the salt stress tolerance ability of Brassica napus and explore the underlying related genetic resources. We used a high-throughput phenotyping platform to quantify 2111 image-based traits (i-traits) of a natural population under three different salt stress conditions and an intervarietal substitution line (ISL) population under nine different stress conditions to monitor and evaluate the salt stress tolerance of B. napus over time. We finally identified 928 high-quality i-traits associated with the salt stress tolerance of B. napus. Moreover, we mapped the salt stress-related loci in the natural population via a genome-wide association study and performed a linkage analysis associated with the ISL population, respectively. These results revealed 234 candidate genes associated with salt stress response, and two novel candidate genes, BnCKX5 and BnERF3, were experimentally verified to regulate the salt stress tolerance of B. napus. This study demonstrates the feasibility of using high-throughput phenotyping-based quantitative trait loci mapping to accurately and comprehensively quantify i-traits associated with B. napus. The mapped loci could be used for genomics-assisted breeding to genetically improve the salt stress tolerance of B. napus.


Assuntos
Brassica napus , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Brassica napus/fisiologia , Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla , Tolerância ao Sal/genética
11.
Eur Radiol ; 33(1): 233-243, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35771248

RESUMO

OBJECTIVES: Minimal extrathyroid extension (mETE) was removed from the TNM staging system. This study was designed prospectively to compare the safety and efficacy of microwave ablation (MWA) versus surgery for treating T1N0M0 papillary thyroid carcinomas (PTC) with sonographically detected mETE. METHODS: From December 2019 to April 2021, 198 patients with T1N0M0 mETE-PTCs evaluated by preoperative ultrasound from 10 hospitals were included. Ninety-two patients elected MWA, and 106 patients elected surgery for treatment. MWA was performed using extensive ablation with hydrodissection. Surgery consisted of lobectomy with ipsilateral central lymph node dissection (CLD), lobe and isthmus excision with ipsilateral CLD and total thyroidectomy with ipsilateral CLD. The rates of technical success, cost, oncologic outcomes, complications and quality of life of the two groups were assessed. RESULTS: The follow-up times for the MWA and surgery groups were 12.7 ± 4.1 and 12.6 ± 5.0 months, respectively. The technical success rate was 100% for both groups. Oncological outcomes of the two groups were similar during the follow-up (all p > 0.05). The MWA group had a shorter operation time, less blood loss and lower costs (all p < 0.001). Three complications (3.3%) were reported in the MWA group and 4 (3.8%) in the surgery group (p = 0.846). The surgery group had higher scores for scar problems and anxiety (p < 0.001 and p = 0.003, respectively). CONCLUSIONS: Microwave ablation was comparable in the short term to surgery in terms of treatment safety and efficacy in selected patients with T1N0M0 mETE-PTC detected by ultrasound. KEY POINTS: • Microwave ablation is comparable to surgery in the safety and short-term efficacy for PTCs with sonographically detected mETE. • Thermal ablation is technically feasible for mETE-PTC treatment. • Patients with mETE-PTC have similar quality of life in the two groups, except for worse scar problems and anxiety in the surgery group.


Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/cirurgia , Carcinoma Papilar/cirurgia , Carcinoma Papilar/patologia , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/cirurgia , Neoplasias da Glândula Tireoide/patologia , Estudos Prospectivos , Micro-Ondas/uso terapêutico , Cicatriz/patologia , Qualidade de Vida , Estudos Retrospectivos
12.
Nucleic Acids Res ; 49(W1): W523-W529, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34037796

RESUMO

Characterizing regulatory effects of genomic variants in plants remains a challenge. Although several tools based on deep-learning models and large-scale chromatin-profiling data have been available to predict regulatory elements and variant effects, no dedicated tools or web services have been reported in plants. Here, we present PlantDeepSEA as a deep learning-based web service to predict regulatory effects of genomic variants in multiple tissues of six plant species (including four crops). PlantDeepSEA provides two main functions. One is called Variant Effector, which aims to predict the effects of sequence variants on chromatin accessibility. Another is Sequence Profiler, a utility that performs 'in silico saturated mutagenesis' analysis to discover high-impact sites (e.g., cis-regulatory elements) within a sequence. When validated on independent test sets, the area under receiver operating characteristic curve of deep learning models in PlantDeepSEA ranges from 0.93 to 0.99. We demonstrate the usability of the web service with two examples. PlantDeepSEA could help to prioritize regulatory causal variants and might improve our understanding of their mechanisms of action in different tissues in plants. PlantDeepSEA is available at http://plantdeepsea.ncpgr.cn/.


Assuntos
Variação Genética , Genoma de Planta , Sequências Reguladoras de Ácido Nucleico , Software , Cromatina , Aprendizado Profundo , Genes de Plantas , Genômica , Internet , Oryza/genética , Plantas/genética , Polimorfismo Genético , Locos de Características Quantitativas , Zea mays/genética
13.
Mediators Inflamm ; 2023: 7123568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124060

RESUMO

Immunotherapy based on immune checkpoint inhibitors (ICIs) is considered to be a promising treatment for stomach adenocarcinoma (STAD), but only a minority of patients benefit from it. It is believed that the poor therapeutic efficacy is attributed to the complex tumor immune microenvironment (TIM) of STAD. Therefore, elucidating the specific regulatory mechanism of TIM in STAD is critical. Previous study suggests that GRP176 may be involved in regulating the pace of circadian behavior, and its role in tumors has not been reported. In this study, we first found that GPR176 was highly expressed in STAD and negatively correlated with patient prognosis. Next, we investigated the relationship between GPR176 and clinical characteristics, and the results showed that the stage is closely related to the level of GPR176. In addition, our further analysis found that GRP176 expression level was significantly correlated with chemotherapeutic drug sensitivity and ICI response. KEGG and GO analyses showed that GPR176 might be involved in stromal remodeling of STAD. Furthermore, we analyzed the association between GPR176 expression and immune implication, and the results revealed that GPR176 was negatively related to the infiltration of various immune cells. Interestingly, GPR176 induced the conversion of TIM while reducing the tumor immune burden (TMB). The expression of GRP176 is closely related to the level of various immunomodulators. Moreover, we performed univariate and multivariate regression analyses on the immunomodulators and finally obtained 4 genes (CRCR4, TNSF18, PDCD1, and TGFB1). Then, we constructed a GRP176-related immunomodulator prognostic model (GRIM) based on the above 4 genes, which was validated to have good predictive power. Finally, we developed a nomogram based on the risk score of GRIM and verified its accuracy. These results suggested that GPR176 is closely related to the prognosis and TIM of STAD. GPR176 may be a new potential target for immunotherapy in STAD.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Prognóstico , Biomarcadores , Adenocarcinoma/genética , Neoplasias Gástricas/genética , Adjuvantes Imunológicos , Microambiente Tumoral
14.
Entropy (Basel) ; 25(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36981365

RESUMO

Turbulence can cause effects such as light intensity fluctuations and phase fluctuations when a laser is transmitted in the atmosphere, which has serious impacts on a number of optical engineering application effects and on climate improvement. Therefore, accurately obtaining real-time turbulence intensity information using lidar-active remote sensing technology is of great significance. In this paper, based on residual turbulent scintillation theory, a Mie-scattering lidar method was developed to detect atmospheric turbulence intensity. By extracting light intensity fluctuation information from a Mie-scattering lidar return signal, the atmospheric refractive index structure constant, Cn2, representing the atmospheric turbulence intensity, could be obtained. Specifically, the scintillation effect on the detection path was analyzed, and the probability density distribution of the light intensity of the Mie-scattering lidar return signal was studied. It was verified that the probability density of logarithmic light intensity basically follows a normal distribution under weak fluctuation conditions. The Cn2 profile based on Kolmogorov turbulence theory was retrieved using a layered, iterative method through the scintillation index. The method for detecting Kolmogorov turbulence intensity was applied to the detection of the non-Kolmogorov turbulence intensity. Through detection using the scintillation index, the corresponding C˜n2 profile could be calculated. The detection of the C˜n2 and Cn2 profiles were compared with the Hufnagel-Valley (HV) night model in the Yinchuan area. The results show that the detection results are consistent with the overall change trend of the model. In general, it is feasible to detect a non-Kolmogorov turbulence profile using Mie-scattering lidar.

15.
Genesis ; 60(8-9): e23494, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35894656

RESUMO

Periodontium possesses stem cell populations for its self-maintenance and regeneration, and has been proved to be an optimal stem cell source for tissue engineering. In vitro studies have shown that stem cells can be isolated from periodontal ligament, alveolar bone marrow and gingiva. In recent years, more studies have focused on identification of periodontal stem cells in vivo. Multiple genetic markers, including Gli1, Prx1, Axin2, αSMA, and LepR, were identified with the lineage tracing approaches. Characteristics, functions, and regulatory mechanisms of specific populations expressing one of these markers have been investigated. In vivo studies also revealed that periodontal stem cells can be regulafrted by different niche and mechanisms including intercellular interactions, ECM and multiple secreted factors. In this review, we summarized the current knowledge of in vitro characteristics and in vivo markers of periodontal stem cells, and discussed the specific regulating niche.


Assuntos
Regeneração Tecidual Guiada Periodontal , Células-Tronco , Marcadores Genéticos , Ligamento Periodontal/fisiologia , Proteína GLI1 em Dedos de Zinco
16.
Nat Methods ; 16(11): 1109-1113, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31673159

RESUMO

We present cleared-tissue axially swept light-sheet microscopy (ctASLM), which enables isotropic, subcellular resolution imaging with high optical sectioning capability and a large field of view over a broad range of immersion media. ctASLM can image live, expanded, and both aqueous and non-aqueous chemically cleared tissue preparations. Depending on the optical configuration, ctASLM provides up to 260 nm of axial resolution, a three to tenfold improvement over confocal and other reported cleared-tissue light-sheet microscopes. We imaged millimeter-scale cleared tissues with subcellular three-dimensional resolution, which enabled automated detection of multicellular tissue architectures, individual cells, synaptic spines and rare cell-cell interactions.


Assuntos
Microscopia de Fluorescência/métodos , Animais , Camundongos , Peixe-Zebra
17.
Plant Biotechnol J ; 20(1): 211-225, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34525252

RESUMO

A high content of seed glucosinolates and their degradation products imposes anti-nutritional effects on livestock; therefore, persistent efforts are made to reduce the seed GSL content to increase the commercial value of rapeseed meal. Here, we dissected the genetic structure of SGC by genome-wide association studies (GWAS) combined with transcriptome-wide association studies (TWAS). Fifteen reliable quantitative trait loci (QTLs) were identified to be associated with the reduced SGC in modern B. napus cultivars by GWAS. Analysis of the selection strength and haplotypes at these QTLs revealed that low SGC was predominantly generated by the co-selection of qGSL.A02.2, qGSL.C02.1, qGSL.A09.2, and qGSL.C09.1. Integration of the results from TWAS, comprehensive bioinformatics, and POCKET algorithm analyses indicated that BnaC02.GTR2 (BnaC02g42260D) is a candidate gene underlying qGSL.C02.1. Using CRISPR/Cas9-derived Bna.gtr2s knockout mutants, we experimentally verified that both BnaC02.GTR2 and its three paralogs positively regulate seed GSL accumulation but negatively regulated vegetative tissue GSL contents. In addition, we observed smaller seeds with higher seed oil content in these Bna.gtr2 mutants. Furthermore, both RNA-seq and correlation analyses suggested that Bna.GTR2s might play a comprehensive role in seed development, such as amino acid accumulation, GSL synthesis, sugar assimilation, and oil accumulation. This study unravels the breeding selection history of low-SGC improvement and provides new insights into the molecular function of Bna.GTR2s in both seed GSL accumulation and seed development in B. napus.


Assuntos
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Estudo de Associação Genômica Ampla/métodos , Glucosinolatos/metabolismo , Melhoramento Vegetal/métodos , Sementes , Transcriptoma/genética
18.
Bioinformatics ; 37(18): 3086-3087, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33677518

RESUMO

MOTIVATION: Microscopy technology plays important roles in many biological research fields. Solvent-cleared brain high-resolution (HR) 3D image reconstruction is an important microscopy application. However, 3D microscopy image generation is time-consuming and expensive. Therefore, we have developed a deep learning framework (DeepS) for both image optical sectioning and super resolution microscopy. RESULTS: Using DeepS to perform super resolution solvent-cleared mouse brain microscopy 3D image yields improved performance in comparison with the standard image processing workflow. We have also developed a web server to allow online usage of DeepS. Users can train their own models with only one pair of training images using the transfer learning function of the web server. AVAILABILITYAND IMPLEMENTATION: http://deeps.cibr.ac.cn. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Microscopia , Animais , Camundongos , Computadores , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional
19.
FASEB J ; 35(1): e21106, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33165997

RESUMO

The protein tyrosine phosphatase SHP2, encoded by PTPN11, is ubiquitously expressed and essential for the development and/or maintenance of multiple tissues and organs. SHP2 is involved in gastrointestinal (GI) epithelium development and homeostasis, but the underlying mechanisms remain elusive. While studying SHP2's role in skeletal development, we made osteoblast-specific SHP2 deficient mice using Osterix (Osx)-Cre as a driver to excise Ptpn11 floxed alleles. Phenotypic characterization of these SHP2 mutants unexpectedly revealed a critical role of SHP2 in GI biology. Mice lacking SHP2 in Osx+ cells developed a fatal GI pathology with dramatic villus hypoplasia. OSTERIX, an OB-specific zinc finger-containing transcription factor is for the first time found to be expressed in GI crypt cells, and SHP2 expression in the crypt Osx+ cells is critical for self-renewal and proliferation. Further, immunostaining revealed the colocalization of OSTERIX with OLFM4 and LGR5, two bona fide GI stem cell markers, at the crypt cells. Furthermore, OSTERIX expression is found to be associated with GI malignancies. Knockdown of SHP2 expression had no apparent influence on the relative numbers of enterocytes, goblet cells or Paneth cells. Given SHP2's key regulatory role in OB differentiation, our studies suggest that OSTERIX and SHP2 are indispensable for gut homeostasis, analogous to SOX9's dual role as a master regulator of cartilage and an important regulator of crypt stem cell biology. Our findings also provide a foundation for new avenues of inquiry into GI stem cell biology and of OSTERIX's therapeutic and diagnostic potential.


Assuntos
Proliferação de Células , Mucosa Intestinal/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Fator de Transcrição Sp7/metabolismo , Células-Tronco , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Camundongos , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 11/deficiência , Fator de Transcrição Sp7/genética
20.
Int J Legal Med ; 136(3): 797-810, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35039894

RESUMO

In the forensic estimation of bone age, the pelvis is important for identifying the bone age of teenagers. However, studies on this topic remain insufficient as a result of lower accuracy due to the overlapping of pelvic organs in X-ray images. Segmentation networks have been used to automate the location of key pelvic areas and minimize restrictions like doubling images of pelvic organs to increase the accuracy of estimation. This study conducted a retrospective analysis of 2164 pelvis X-ray images of Chinese Han teenagers ranging from 11 to 21 years old. Key areas of the pelvis were detected with a U-Net segmentation network, and the findings were combined with the original X-ray image for regional augmentation. Bone age estimation was conducted with the enhanced and not enhanced pelvis X-ray images by separately using three convolutional neural networks (CNNs). The root mean square errors (RMSE) of the Inception-V3, Inception-ResNet-V2, and VGG19 convolutional neural networks were 0.93 years, 1.12 years, and 1.14 years, respectively, and the mean absolute errors (MAE) of these networks were 0.67 years, 0.77 years, and 0.88 years, respectively. For comparison, a network without segmentation was employed to conduct the estimation, and it was found that the RMSE of the three CNNs above became 1.22 years, 1.25 years, and 1.63 years, respectively, and the MAE became 0.93 years, 0.96 years, and 1.23 years. Bland-Altman plots and attention maps were also generated to provide a visual comparison. The proposed segmentation network can be used to reduce the influence of restrictions like image overlapping of organs and can thus increase the accuracy of pelvic bone age estimation.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Adolescente , Adulto , Criança , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pelve , Estudos Retrospectivos , Raios X , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA