Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(4): 1081-1097.e19, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606978

RESUMO

Mutations in DNA damage response (DDR) genes endanger genome integrity and predispose to cancer and genetic disorders. Here, using CRISPR-dependent cytosine base editing screens, we identify > 2,000 sgRNAs that generate nucleotide variants in 86 DDR genes, resulting in altered cellular fitness upon DNA damage. Among those variants, we discover loss- and gain-of-function mutants in the Tudor domain of the DDR regulator 53BP1 that define a non-canonical surface required for binding the deubiquitinase USP28. Moreover, we characterize variants of the TRAIP ubiquitin ligase that define a domain, whose loss renders cells resistant to topoisomerase I inhibition. Finally, we identify mutations in the ATM kinase with opposing genome stability phenotypes and loss-of-function mutations in the CHK2 kinase previously categorized as variants of uncertain significance for breast cancer. We anticipate that this resource will enable the discovery of additional DDR gene functions and expedite studies of DDR variants in human disease.


Assuntos
Dano ao DNA , Edição de Genes , Testes Genéticos , Sequência de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas/genética , Camptotecina/farmacologia , Linhagem Celular , Dano ao DNA/genética , Reparo do DNA/genética , Feminino , Humanos , Mutação/genética , Fenótipo , Ligação Proteica , Domínios Proteicos , RNA Guia de Cinetoplastídeos/genética , Inibidores da Topoisomerase/farmacologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/química , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Genes Dev ; 38(11-12): 569-582, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38997156

RESUMO

Salivary gland homeostasis and regeneration after radiotherapy depend significantly on progenitor cells. However, the lineage of submandibular gland (SMG) progenitor cells remains less defined compared with other normal organs. Here, using a mouse strain expressing regulated CreERT2 recombinase from the endogenous Tert locus, we identify a distinct telomerase-expressing (TertHigh) cell population located in the ductal region of the adult SMG. These TertHigh cells contribute to ductal cell generation during SMG homeostasis and to both ductal and acinar cell renewal 1 year after radiotherapy. TertHigh cells maintain self-renewal capacity during in vitro culture, exhibit resistance to radiation damage, and demonstrate enhanced proliferative activity after radiation exposure. Similarly, primary human SMG cells with high Tert expression display enhanced cell survival after radiotherapy, and CRISPR-activated Tert in human SMG spheres increases proliferation after radiation. RNA sequencing reveals upregulation of "cell cycling" and "oxidative stress response" pathways in TertHigh cells following radiation. Mechanistically, Tert appears to modulate cell survival through ROS levels in SMG spheres following radiation damage. Our findings highlight the significance of TertHigh cells in salivary gland biology, providing insights into their response to radiotherapy and into their use as a potential target for enhancing salivary gland regeneration after radiotherapy.


Assuntos
Homeostase , Regeneração , Telomerase , Telomerase/metabolismo , Telomerase/genética , Animais , Homeostase/genética , Homeostase/efeitos da radiação , Camundongos , Regeneração/efeitos da radiação , Regeneração/genética , Humanos , Glândulas Salivares/efeitos da radiação , Glândulas Salivares/metabolismo , Glândulas Salivares/citologia , Proliferação de Células/efeitos da radiação , Proliferação de Células/genética , Sobrevivência Celular/efeitos da radiação , Sobrevivência Celular/genética , Glândula Submandibular/efeitos da radiação , Glândula Submandibular/metabolismo , Células-Tronco/efeitos da radiação , Células-Tronco/metabolismo , Células-Tronco/citologia , Radioterapia/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas
3.
Mol Cell ; 83(14): 2434-2448.e7, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37402370

RESUMO

Insertions and deletions (indels) are common sources of structural variation, and insertions originating from spontaneous DNA lesions are frequent in cancer. We developed a highly sensitive assay called insertion and deletion sequencing (Indel-seq) to monitor rearrangements in human cells at the TRIM37 acceptor locus that reports indels stemming from experimentally induced and spontaneous genome instability. Templated insertions, which derive from sequences genome wide, require contact between donor and acceptor loci, require homologous recombination, and are stimulated by DNA end-processing. Insertions are facilitated by transcription and involve a DNA/RNA hybrid intermediate. Indel-seq reveals that insertions are generated via multiple pathways. The broken acceptor site anneals with a resected DNA break or invades the displaced strand of a transcription bubble or R-loop, followed by DNA synthesis, displacement, and then ligation by non-homologous end joining. Our studies identify transcription-coupled insertions as a critical source of spontaneous genome instability that is distinct from cut-and-paste events.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Reparo do DNA por Junção de Extremidades , DNA/genética , Instabilidade Genômica , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Gut ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353725

RESUMO

BACKGROUND: While p53 mutations occur early in Barrett's oesophagus (BE) progression to oesophageal adenocarcinoma (EAC), their role in gastric cardia stem cells remains unclear. OBJECTIVE: This study investigates the impact of p53 mutation on the fate and function of cardia progenitor cells in BE to EAC progression, particularly under the duress of chronic injury. DESIGN: We used a BE mouse model (L2-IL1ß) harbouring a Trp53 mutation (R172H) to study the effects of p53 on Cck2r+ cardia progenitor cells. We employed lineage tracing, pathological analysis, organoid cultures, single-cell RNA sequencing (scRNA-seq) and computational analyses to investigate changes in progenitor cell behaviour, differentiation patterns and tumour progression. Additionally, we performed orthotopic transplantation of sorted metaplastic and mutant progenitor cells to assess their tumourigenic potential in vivo. RESULTS: The p53 mutation acts as a switch to expand progenitor cells and inhibit their differentiation towards metaplasia, but only amidst chronic injury. In L2-IL1ß mice, p53 mutation increased progenitors expansion and lineage-tracing with a shift from metaplasia to dysplasia. scRNA-seq revealed dysplastic cells arise directly from mutant progenitors rather than progressing through metaplasia. In vitro, p53 mutation enhanced BE progenitors' organoid-forming efficiency, growth, DNA damage resistance and progression to aneuploidy. Sorted metaplastic cells grew poorly with no progression to dysplasia, while mutant progenitors gave rise to dysplasia in orthotopic transplantation. Computational analyses indicated that p53 mutation inhibited stem cell differentiation through Notch activation. CONCLUSIONS: p53 mutation contributes to BE progression by increasing expansion and fitness of undifferentiated cardia progenitors and preventing their differentiation towards metaplasia.

5.
BMC Cardiovasc Disord ; 23(1): 458, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710173

RESUMO

BACKGROUND: Patients with repaired tetralogy of Fallot (rTOF) experience long-term chronic pulmonary valve regurgitation resulting in right ventricular (RV) dilatation. According to current guidelines, the evaluation of patients with rTOF for RV dilatation should be based on cardiac magnetic resonance (CMR). However, for many asymptomatic patients, routine CMR is not practical. Our study aims to identify screening methods for CMR based on echocardiographic data, with the goal of establishing a more practical and cheap method of screening for severity of RV dilatation in patients with asymptomatic rTOF. METHODS: Thirty two rTOF patients (mean age, 21(10.5) y, 21 males) with moderate to severe pulmonary regurgitation (PR) were prospectively recruited. Each patient received CMR and echocardiogram examination within 1 month prior to operation and collected clinical data, and then received echocardiogram examination at discharge and 3-6 months post-surgery. RESULTS: RV moderate-severe dilatation was defined as right ventricular end-diastolic volume index (RVEDVI) ≥ 160 ml/m2 or right ventricular end-systolic volume index (RVESVI) ≥ 80 ml/m2 in 15 of 32 patients (RVEDVI, 202.15[171.51, 252.56] ml/m2, RVESVI, 111.99 [96.28, 171.74] ml/m2). The other 17 (RVESDI, 130.19 [117.91, 139.35] ml/m2, RVESVI = 67.91 [63.35, 73.11] ml/m2) were defined as right ventricle mild dilatation, i.e., RVEDVI < 160 ml/m2 and RVESVI < 80 ml/m2, and the two parameters were higher than normal values. Compared with the RV mild dilatation group, patients of RV moderate-severe dilatation have worse cardiac function before surgery (right ventricular ejection fraction, 38.92(9.19) % versus 48.31(5.53) %, p < 0.001; Left ventricular ejection fraction, 59.80(10.26) versus 66.41(4.15), p = 0.021). Patients with RV moderate-severe dilatation faced longer operation time and more blood transfusion during operation (operation time, 271.53(08.33) min versus 170.53(72.36) min, p < 0.01; Intraoperative blood transfusion, 200(175) ml versus 100(50) ml, p = 0.001). Postoperative RV moderate-severe dilatation patients have poor short-term prognosis, which was reflected in a longer postoperative hospital stay (6.59 [2.12] days versus 9.80 [5.10] days, p = 0.024) and a higher incidence of hypohepatia (0[0] % versus 4[26.7] %, p = 0.023). Patients with RV dilatation score > 2.35 were diagnosed with RV moderate-severe dilatation (AUC = 0,882; Sensitivity = 94.1%; Specificity = 77.3%). CONCLUSIONS: RV moderate-severe dilatation is associated with worse preoperative cardiac function and short-term prognosis after PVR in rTOF patients with moderate to severe PR. The RV dilatation score is an effective screening method. When RV dilatation score > 2.35, the patient is indicated for further CMR examination and treatment.


Assuntos
Cardiopatias Congênitas , Insuficiência da Valva Pulmonar , Tetralogia de Fallot , Masculino , Humanos , Adulto , Adulto Jovem , Tetralogia de Fallot/complicações , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Volume Sistólico , Dilatação , Função Ventricular Esquerda , Função Ventricular Direita , Insuficiência da Valva Pulmonar/diagnóstico por imagem , Insuficiência da Valva Pulmonar/etiologia , Insuficiência da Valva Pulmonar/cirurgia
6.
Proc Natl Acad Sci U S A ; 117(41): 25700-25711, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989150

RESUMO

To generate antibodies with different effector functions, B cells undergo Immunoglobulin Heavy Chain (IgH) class switch recombination (CSR). The ligation step of CSR is usually mediated by the classical nonhomologous end-joining (cNHEJ) pathway. In cNHEJ-deficient cells, a remarkable ∼25% of CSR can be achieved by the alternative end-joining (Alt-EJ) pathway that preferentially uses microhomology (MH) at the junctions. While A-EJ-mediated repair of endonuclease-generated breaks requires DNA end resection, we show that CtIP-mediated DNA end resection is dispensable for A-EJ-mediated CSR using cNHEJ-deficient B cells. High-throughput sequencing analyses revealed that loss of ATM/ATR phosphorylation of CtIP at T855 or ATM kinase inhibition suppresses resection without altering the MH pattern of the A-EJ-mediated switch junctions. Moreover, we found that ATM kinase promotes Alt-EJ-mediated CSR by suppressing interchromosomal translocations independent of end resection. Finally, temporal analyses reveal that MHs are enriched in early internal deletions even in cNHEJ-proficient B cells. Thus, we propose that repetitive IgH switch regions represent favored substrates for MH-mediated end-joining contributing to the robustness and resection independence of A-EJ-mediated CSR.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA por Junção de Extremidades , Switching de Imunoglobulina , Cadeias Pesadas de Imunoglobulinas/genética , Motivos de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linfócitos B/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Camundongos , Fosforilação , Recombinação Genética
7.
Clin Exp Pharmacol Physiol ; 49(1): 25-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34438468

RESUMO

Atrial fibrillation (AF) is associated with atrial conduction disturbances caused by electrical and/or structural remodelling. In the present study, we hypothesized that connexin might interact with the calcium channel through forming a protein complex and, then, participates in the pathogenesis of AF. Western blot and whole-cell patch clamp showed that protein levels of Cav1.2 and connexin 43 (Cx43) and basal ICa,L were decreased in AF subjects compared to sinus rhythm (SR) controls. In cultured atrium-derived myocytes (HL-1 cells), knocking-down of Cx43 or incubation with 30 mmol/L glycyrrhetinic acid significantly inhibited protein levels of Cav1.2 and Cav3.1 and the current density of ICa,L and ICa,T . Incubation with nifedipine or mibefradil decreased the protein level of Cx43 in HL-1 cells. Moreover, Cx43 was colocalized with Cav1.2 and Cav3.1 in atrial myocytes. Therefore, Cx43 might regulate the ICa,L and ICa,T through colocalization with calcium channel subunits in atrial myocytes, representing a potential pathogenic mechanism in AF.


Assuntos
Remodelamento Atrial , Canais de Cálcio/fisiologia , Conexina 43/fisiologia , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Fibrilação Atrial/metabolismo , Remodelamento Atrial/fisiologia , Western Blotting , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/fisiologia , Linhagem Celular , Células Cultivadas , Conexina 43/metabolismo , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/fisiopatologia , Humanos , Mibefradil/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Nifedipino/farmacologia , Técnicas de Patch-Clamp
8.
Cancer Immunol Immunother ; 70(3): 831-842, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33140187

RESUMO

BACKGROUND: Glioblastomas (GBMs) in patients harboring somatic or germinal mutations of mismatch-repair (MMR) genes exhibit a hypermutable phenotype. Here, we describe a GBM patient with increased tumor mutational burden and germline MMR mutations, treated using anti-PD1 therapy. METHODS: A woman with newly diagnosed GBM (nGBM) was treated by surgery, radiotherapy, and temozolomide. The tumor recurred after 13 months leading to a second surgery and treatment with nivolumab. Whole-exome sequencing was performed on the nGBM, recurrent GBM (rGBM), and blood. Immune infiltration was investigated by immunohistochemistry and the immune response in the blood during treatment was analyzed by flow cytometry. RESULTS: High density of infiltrating CD163 + cells was found in both GBM specimens. Large numbers of CD3 + and CD8 + T cells were homogeneously distributed in the nGBM. The infiltration of CD4 + T cells and a different CD8 + T cell density were observed in the rGBM. Both GBM shared 12,431 somatic mutations, with 113 substitutions specific to the nGBM and 1,683 specific to the rGBM. Germline variants included pathogenic mutation in the MSH2 (R359S) gene, suggesting the diagnosis of Lynch syndrome. Systemic immunophenotyping revealed the generation of CD8 + T memory cells and persistent activation of CD4 + T cells. The patient is still receiving nivolumab 68 months after the second surgery. CONCLUSIONS: Our observations indicate that the hypermutator phenotype associated with germinal mutations of MMR genes and abundant T-cell infiltration contributes to a durable clinical benefit sustained by a persistent and robust immune response during anti-PD1 therapy.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais Hereditárias sem Polipose/genética , Glioblastoma/patologia , Mutação , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto , Biópsia , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/tratamento farmacológico , Terapia Combinada , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Terapia de Alvo Molecular , Recidiva Local de Neoplasia , Neuroimagem , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Retratamento , Linfócitos T/efeitos dos fármacos , Resultado do Tratamento , Sequenciamento do Exoma
9.
PLoS Comput Biol ; 16(2): e1007701, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32101536

RESUMO

Tumor-specific genomic alterations allow systematic identification of genetic interactions that promote tumorigenesis and tumor vulnerabilities, offering novel strategies for development of targeted therapies for individual patients. We develop an Individualized Network-based Co-Mutation (INCM) methodology by inspecting over 2.5 million nonsynonymous somatic mutations derived from 6,789 tumor exomes across 14 cancer types from The Cancer Genome Atlas. Our INCM analysis reveals a higher genetic interaction burden on the significantly mutated genes, experimentally validated cancer genes, chromosome regulatory factors, and DNA damage repair genes, as compared to human pan-cancer essential genes identified by CRISPR-Cas9 screenings on 324 cancer cell lines. We find that genes involved in the cancer type-specific genetic subnetworks identified by INCM are significantly enriched in established cancer pathways, and the INCM-inferred putative genetic interactions are correlated with patient survival. By analyzing drug pharmacogenomics profiles from the Genomics of Drug Sensitivity in Cancer database, we show that the network-predicted putative genetic interactions (e.g., BRCA2-TP53) are significantly correlated with sensitivity/resistance of multiple therapeutic agents. We experimentally validated that afatinib has the strongest cytotoxic activity on BT474 (IC50 = 55.5 nM, BRCA2 and TP53 co-mutant) compared to MCF7 (IC50 = 7.7 µM, both BRCA2 and TP53 wild type) and MDA-MB-231 (IC50 = 7.9 µM, BRCA2 wild type but TP53 mutant). Finally, drug-target network analysis reveals several potential druggable genetic interactions by targeting tumor vulnerabilities. This study offers a powerful network-based methodology for identification of candidate therapeutic pathways that target tumor vulnerabilities and prioritization of potential pharmacogenomics biomarkers for development of personalized cancer medicine.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Neoplasias/genética , Antineoplásicos/uso terapêutico , Proteína BRCA2/genética , Biomarcadores Tumorais , Sistemas CRISPR-Cas , Carcinogênese , Linhagem Celular Tumoral , Exoma , Testes Genéticos , Genômica , Humanos , Concentração Inibidora 50 , Modelos Teóricos , Mutação , Neoplasias/tratamento farmacológico , Farmacogenética , Medicina de Precisão , Mapeamento de Interação de Proteínas , Taxa de Sobrevida , Proteína Supressora de Tumor p53/genética
10.
Clin Exp Pharmacol Physiol ; 48(3): 435-442, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32966616

RESUMO

The atrial-specific ultra-rapid delayed rectifier K+ current (Ikur) plays an important role in the progression of atrial fibrillation (AF). Because inflammation is known to lead to the onset of AF, we aimed to investigate whether tumour necrosis factor-α (TNF-α) played a role in regulating Ikur and the potential signalling pathways involved. Whole-cell patch-clamp and biochemical assays were used to study the regulation and expression of Ikur in myocytes and in tissues from left atrial appendages (LAAs) obtained from patients with sinus rhythm (SR) or AF, as well as in rat cardiomyocytes (H9c2 cells) and mouse atrial myocytes (HL-1 cells). Ikur current density was markedly reduced in atrial myocytes from AF patients compared with SR controls. Reduction of Kv1.5 protein levels was accompanied by increased expression of TNF-α and protein kinase C (PKC)α activation in AF patients. Treatment with TNF-α dose-dependently reduced Ikur and protein expression of Kv1.5 but not Kv3.1b in H9c2 cells and HL-1 cells. TNF-α also increased activity of PKCα. Specific PKCα inhibitor Gö6976 alleviated the reduction in Ikur induced by TNF-α, but not the reduction in Kv1.5 protein. TNF-α was involved in the electrical remodelling associated with AF, probably by depressing Ikur in atrial myocytes via activation of PKCα.


Assuntos
Fator de Necrose Tumoral alfa , Animais , Átrios do Coração/metabolismo , Camundongos , Miócitos Cardíacos , Proteína Quinase C-alfa/metabolismo , Ratos
11.
Am J Hum Genet ; 100(1): 5-20, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27939638

RESUMO

The allosteric regulation triggering the protein's functional activity via conformational changes is an intrinsic function of protein under many physiological and pathological conditions, including cancer. Identification of the biological effects of specific somatic variants on allosteric proteins and the phenotypes that they alter during tumor initiation and progression is a central challenge for cancer genomes in the post-genomic era. Here, we mapped more than 47,000 somatic missense mutations observed in approximately 7,000 tumor-normal matched samples across 33 cancer types into protein allosteric sites to prioritize the mutated allosteric proteins and we tested our prediction in cancer cell lines. We found that the deleterious mutations identified in cancer genomes were more significantly enriched at protein allosteric sites than tolerated mutations, suggesting a critical role for protein allosteric variants in cancer. Next, we developed a statistical approach, namely AlloDriver, and further identified 15 potential mutated allosteric proteins during pan-cancer and individual cancer-type analyses. More importantly, we experimentally confirmed that p.Pro360Ala on PDE10A played a potential oncogenic role in mediating tumorigenesis in non-small cell lung cancer (NSCLC). In summary, these findings shed light on the role of allosteric regulation during tumorigenesis and provide a useful tool for the timely development of targeted cancer therapies.


Assuntos
Regulação Alostérica/genética , Sítio Alostérico/genética , Genoma Humano/genética , Mutação de Sentido Incorreto/genética , Neoplasias/genética , Proteoma/genética , Proteômica , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências
12.
BMC Med ; 18(1): 216, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32664879

RESUMO

BACKGROUND: Coronavirus Disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has now been confirmed worldwide. Yet, COVID-19 is strangely and tragically selective. Morbidity and mortality due to COVID19 rise dramatically with age and co-existing health conditions, including cancer and cardiovascular diseases. Human genetic factors may contribute to the extremely high transmissibility of SARS-CoV-2 and to the relentlessly progressive disease observed in a small but significant proportion of infected individuals, but these factors are largely unknown. MAIN BODY: In this study, we investigated genetic susceptibility to COVID-19 by examining DNA polymorphisms in ACE2 and TMPRSS2 (two key host factors of SARS-CoV-2) from ~ 81,000 human genomes. We found unique genetic susceptibility across different populations in ACE2 and TMPRSS2. Specifically, ACE2 polymorphisms were found to be associated with cardiovascular and pulmonary conditions by altering the angiotensinogen-ACE2 interactions, such as p.Arg514Gly in the African/African-American population. Unique but prevalent polymorphisms (including p.Val160Met (rs12329760), an expression quantitative trait locus (eQTL)) in TMPRSS2, offer potential explanations for differential genetic susceptibility to COVID-19 as well as for risk factors, including those with cancer and the high-risk group of male patients. We further discussed that polymorphisms in ACE2 or TMPRSS2 could guide effective treatments (i.e., hydroxychloroquine and camostat) for COVID-19. CONCLUSION: This study suggested that ACE2 or TMPRSS2 DNA polymorphisms were likely associated with genetic susceptibility of COVID-19, which calls for a human genetics initiative for fighting the COVID-19 pandemic.


Assuntos
Infecções por Coronavirus/genética , Predisposição Genética para Doença , Peptidil Dipeptidase A/genética , Pneumonia Viral/genética , Serina Endopeptidases/genética , Enzima de Conversão de Angiotensina 2 , Betacoronavirus , População Negra , COVID-19 , Infecções por Coronavirus/etnologia , Genética Populacional , Humanos , Masculino , Pandemias , Pneumonia Viral/etnologia , Polimorfismo Genético , Locos de Características Quantitativas , Fatores de Risco , SARS-CoV-2
13.
J Card Surg ; 35(2): 437-440, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31692091

RESUMO

Anomalous origin of one pulmonary artery from the ascending aorta is a rare congenital cardiac anomaly characterized by progressive pulmonary arterial hypertension (PAH) and pulmonary vascular obstructive disease (PVOD) in early childhood. This condition is assumed to be inoperable in older children and adults. However, pulmonary vascular resistance of the isolated lung is difficult to measure by catheterization due to its unique anatomical features, and thus we have used lung biopsy as an alternative method to evaluate candidacy for repair. Here, we report our experience with two patients whose lung biopsy demonstrated reversible PVOD, leading us to perform a surgical repair.


Assuntos
Aorta/anormalidades , Biópsia , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/patologia , Pulmão/patologia , Artéria Pulmonar/anormalidades , Adolescente , Fatores Etários , Aorta/diagnóstico por imagem , Ecocardiografia , Feminino , Cardiopatias Congênitas/complicações , Humanos , Hipertensão Pulmonar/etiologia , Masculino , Artéria Pulmonar/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/etiologia , Tomografia Computadorizada por Raios X
14.
J Card Surg ; 35(1): 48-53, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31899832

RESUMO

BACKGROUND: Precisely evaluating the need for transannular patch (TAP) placement is very important in the surgical treatment of tetralogy of Fallot. We hypothesized that the pulmonary annulus area index (PAAI, the pulmonary-to-aortic valve annulus cross-sectional area ratio) could be a useful and accessible predictor for TAP placement. METHODS: The medical records of patients who underwent tetralogy of Fallot repair between 1 January 2016 and 31 December 2017 were reviewed retrospectively. A total of 255 patients were included and categorized into two groups: patients who needed TAP placement and patients who did not. Various candidate predictors for TAP placement (PAAI, pulmonary annulus z-score, and velocity across the pulmonary annulus) were compared using receiver operating characteristic curves. The optimal cutoff for each predictor was assessed. RESULTS: Among the 255 patients included, 156 needed TAP placement (156/237, 65.8%). Both the PAAI (0.28 [0.20/0.34] vs 0.14 [0.09/0.19]; P < .0001) and z-score (-1.5 [-2.9, -0.4] vs -3.6 [-5.3/-2.6]; P < .0001) were smaller in the TAP group. The PAAI is a useful predictor of the pulmonary annulus z-score (AUC 0.830 vs 0.811, P = .19). Combination analysis of the PAAI and velocity across the pulmonary annulus (PV vmax ) showed better predictive value than the PAAI and z-score (AUC 0.860, sensitivity 89.7%, specificity 61.7%, P < .0001). CONCLUSIONS: Our results suggest that the PAAI is a useful and accessible predictor for TAP placement and can be applied readily and simply in clinical practice. A combination with the velocity across the pulmonary annulus could promote the accuracy of prediction.


Assuntos
Procedimentos Cirúrgicos Cardíacos/métodos , Valva Pulmonar/patologia , Tetralogia de Fallot/cirurgia , Feminino , Previsões , Humanos , Lactente , Masculino , Valva Pulmonar/fisiopatologia , Estudos Retrospectivos , Resultado do Tratamento
15.
Int J Cancer ; 144(12): 3023-3030, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30536544

RESUMO

Hypermutagenesis refers to marked increase in the number of mutations due to continuous mutagenic process. Hypermutated tumors, have being found in several tumor types, are associated with inherited or acquired alterations in the DNA repair pathways. Hypermutation has been observed in a subset of adult glioma patients as a direct result of temozolomide(TMZ)-induced mutagenesis. In our study, we have identified a rare subset of treatment-naïve adult gliomas with de novo hypermutator phenotype and explored the evolution of spontaneous and treatment-induced hypermutagenesis. We conducted Whole-Exome Sequencing (WES), Whole-Transcriptome Sequencing (WTS), and Single-Cell Sequencing (SCS) of TMZ-naïve and post-TMZ-treated hypermutated tumors to identify distinct clinical or genomic manifestations that contribute to the development of hypermutation in untreated adult gliomas. TMZ-naïve hypermutated tumors were marked by absence of IDH1 somatic mutation and MGMT promoter (pMGMT) methylation, two genomic traits that were significantly associated with the TMZ-induced hypermutagenic event in glioblastoma, and harbored inherited alterations in the mismatch repair (MMR) machinery. The immediate family members of the TMZ-naive hypermutated glioma patients were also previous diagnosed with cancer development history, suggesting that germline dysfunction of the MMR pathway could potentially pose hereditary risk to genetic predisposition of carcinogenesis in gliomas. Lastly, both TMZ-naïve and post-TMZ-treated hypermutated tumors exhibited a significant accumulation of neoantigen loads, suggesting immunotherapeutic alternatives. Our results present new and unique understanding of hypermutagenic process in adult gliomas and an important step towards clinical implication of immunotherapy in glioma treatment.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Reparo de Erro de Pareamento de DNA , Mutação em Linhagem Germinativa , Glioblastoma/genética , Adulto , Idoso , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Transformação Celular Neoplásica/genética , Neoplasias do Sistema Nervoso Central/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Temozolomida/uso terapêutico , Transcriptoma , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Sequenciamento do Exoma , Adulto Jovem
17.
Nucleic Acids Res ; 45(D1): D256-D263, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27907895

RESUMO

Mutations at the ligand binding sites (LBSs) can influence protein structure stability, binding affinity with small molecules, and drug resistance in cancer patients. Our recent analysis revealed that ligand binding residues had a significantly higher mutation rate than other parts of the protein. Here, we built mutLBSgeneDB (mutated Ligand Binding Site gene DataBase) available at http://zhaobioinfo.org/mutLBSgeneDB We collected and curated over 2300 genes (mutLBSgenes) having ∼12 000 somatic mutations at ∼10 000 LBSs across 16 cancer types and selected 744 drug targetable genes (targetable_mutLBSgenes) by incorporating kinases, transcription factors, pharmacological genes, and cancer driver genes. We analyzed LBS mutation information, differential gene expression network, drug response correlation with gene expression, and protein stability changes for all mutLBSgenes using integrated genetic, genomic, transcriptomic, proteomic, network and functional information. We calculated and compared the binding affinities of 20 carefully selected genes with their drugs in wild type and mutant forms. mutLBSgeneDB provides a user-friendly web interface for searching and browsing through seven categories of annotations: Gene summary, Mutated information, Protein structure related information, Differential gene expression and gene-gene network, Phenotype information, Pharmacological information, and Conservation information. mutLBSgeneDB provides a useful resource for functional genomics, protein structure, drug and disease research communities.


Assuntos
Sítios de Ligação , Bases de Dados Genéticas , Mutação , Proteínas/genética , Proteínas/metabolismo , Biologia Computacional/métodos , Evolução Molecular , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Ligantes , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Software , Relação Estrutura-Atividade , Navegador
18.
Nucleic Acids Res ; 45(D1): D915-D924, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27733502

RESUMO

SZGR 2.0 is a comprehensive resource of candidate variants and genes for schizophrenia, covering genetic, epigenetic, transcriptomic, translational and many other types of evidence. By systematic review and curation of multiple lines of evidence, we included almost all variants and genes that have ever been reported to be associated with schizophrenia. In particular, we collected ∼4200 common variants reported in genome-wide association studies, ∼1000 de novo mutations discovered by large-scale sequencing of family samples, 215 genes spanning rare and replication copy number variations, 99 genes overlapping with linkage regions, 240 differentially expressed genes, 4651 differentially methylated genes and 49 genes as antipsychotic drug targets. To facilitate interpretation, we included various functional annotation data, especially brain eQTL, methylation QTL, brain expression featured in deep categorization of brain areas and developmental stages and brain-specific promoter and enhancer annotations. Furthermore, we conducted cross-study, cross-data type and integrative analyses of the multidimensional data deposited in SZGR 2.0, and made the data and results available through a user-friendly interface. In summary, SZGR 2.0 provides a one-stop shop of schizophrenia variants and genes and their function and regulation, providing an important resource in the schizophrenia and other mental disease community. SZGR 2.0 is available at https://bioinfo.uth.edu/SZGR/.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Esquizofrenia/genética , Software , Antipsicóticos/uso terapêutico , Variações do Número de Cópias de DNA , Metilação de DNA , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ligação Genética , Variação Genética , Humanos , Mutação , Locos de Características Quantitativas , Esquizofrenia/tratamento farmacológico , Navegador
19.
Brief Bioinform ; 17(4): 642-56, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26307061

RESUMO

Cancer is often driven by the accumulation of genetic alterations, including single nucleotide variants, small insertions or deletions, gene fusions, copy-number variations, and large chromosomal rearrangements. Recent advances in next-generation sequencing technologies have helped investigators generate massive amounts of cancer genomic data and catalog somatic mutations in both common and rare cancer types. So far, the somatic mutation landscapes and signatures of >10 major cancer types have been reported; however, pinpointing driver mutations and cancer genes from millions of available cancer somatic mutations remains a monumental challenge. To tackle this important task, many methods and computational tools have been developed during the past several years and, thus, a review of its advances is urgently needed. Here, we first summarize the main features of these methods and tools for whole-exome, whole-genome and whole-transcriptome sequencing data. Then, we discuss major challenges like tumor intra-heterogeneity, tumor sample saturation and functionality of synonymous mutations in cancer, all of which may result in false-positive discoveries. Finally, we highlight new directions in studying regulatory roles of noncoding somatic mutations and quantitatively measuring circulating tumor DNA in cancer. This review may help investigators find an appropriate tool for detecting potential driver or actionable mutations in rapidly emerging precision cancer medicine.


Assuntos
Mutação , Neoplasias , Exoma , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
20.
Biotechnol Bioeng ; 115(1): 114-125, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28865116

RESUMO

In the present work, by performing chemostat experiments at 400 and 600 RPM, two typical power inputs representative of industrial penicillin fermentation (P/V, 1.00 kW/m3 in more remote zones and 3.83 kW/m3 in the vicinity of the impellers, respectively) were scaled-down to bench-scale bioreactors. It was found that at 400 RPM applied in prolonged glucose-limited chemostat cultures, the previously reported degeneration of penicillin production using an industrial Penicillium chrysogenum strain was virtually absent. To investigate this, the cellular response was studied at flux (stoichiometry), residual glucose, intracellular metabolite and transcript levels. At 600 RPM, 20% more cell lysis was observed and the increased degeneration of penicillin production was accompanied by a 22% larger ATP gap and an unexpected 20-fold decrease in the residual glucose concentration (Cs,out ). At the same time, the biomass specific glucose consumption rate (qs ) did not change but the intracellular glucose concentration was about sixfold higher, which indicates a change to a higher affinity glucose transporter at 600 RPM. In addition, power input differences cause differences in the diffusion rates of glucose and the calculated Batchelor diffusion length scale suggests the presence of a glucose diffusion layer at the glucose transporting parts of the hyphae, which was further substantiated by a simple proposed glucose diffusion-uptake model. By analysis of calculated mass action ratios (MARs) and energy consumption, it indicated that at 600 RPM glucose sensing and signal transduction in response to the low Cs,out appear to trigger a gluconeogenic type of metabolic flux rearrangement, a futile cycle through the pentose phosphate pathway (PPP) and a declining redox state of the cytosol. In support of the change in glucose transport and degeneration of penicillin production at 600 RPM, the transcript levels of the putative high-affinity glucose/hexose transporter genes Pc12g02880 and Pc06g01340 increased 3.5- and 3.3-fold, respectively, and those of the pcbC gene encoding isopenicillin N-synthetase (IPNS) were more than twofold lower in the time range of 100-200 hr of the chemostat cultures. Summarizing, changes at power input have unexpected effects on degeneration and glucose transport, and result in significant metabolic rearrangements. These findings are relevant for the industrial production of penicillin, and other fermentations with filamentous microorganisms.


Assuntos
Antibacterianos/biossíntese , Reatores Biológicos/microbiologia , Penicilinas/biossíntese , Penicillium chrysogenum/crescimento & desenvolvimento , Penicillium chrysogenum/metabolismo , Fatores Biológicos/metabolismo , Fermentação , Glucose/metabolismo , Análise de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA