Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.184
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 55(5): 879-894.e6, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35443157

RESUMO

The principal signals that drive memory and cognitive impairment in Alzheimer's disease (AD) remain elusive. Here, we revealed brain-wide cellular reactions to type I interferon (IFN-I), an innate immune cytokine aberrantly elicited by amyloid ß plaques, and examined their role in cognition and neuropathology relevant to AD in a murine amyloidosis model. Using a fate-mapping reporter system to track cellular responses to IFN-I, we detected robust, Aß-pathology-dependent IFN-I activation in microglia and other cell types. Long-term blockade of IFN-I receptor (IFNAR) rescued both memory and synaptic deficits and resulted in reduced microgliosis, inflammation, and neuritic pathology. Microglia-specific Ifnar1 deletion attenuated the loss of post-synaptic terminals by selective engulfment, whereas neural Ifnar1 deletion restored pre-synaptic terminals and decreased plaque accumulation. Overall, IFN-I signaling represents a critical module within the neuroinflammatory network of AD and prompts concerted cellular states that are detrimental to memory and cognition.


Assuntos
Doença de Alzheimer , Interferon Tipo I , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Imunidade Inata , Interferon Tipo I/metabolismo , Transtornos da Memória/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/metabolismo
2.
Nat Rev Mol Cell Biol ; 20(9): 535-550, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31197269

RESUMO

In eukaryotes, the genome does not exist as a linear molecule but instead is hierarchically packaged inside the nucleus. This complex genome organization includes multiscale structural units of chromosome territories, compartments, topologically associating domains, which are often demarcated by architectural proteins such as CTCF and cohesin, and chromatin loops. The 3D organization of chromatin modulates biological processes such as transcription, DNA replication, cell division and meiosis, which are crucial for cell differentiation and animal development. In this Review, we discuss recent progress in our understanding of the general principles of chromatin folding, its regulation and its functions in mammalian development. Specifically, we discuss the dynamics of 3D chromatin and genome organization during gametogenesis, embryonic development, lineage commitment and stem cell differentiation, and focus on the functions of chromatin architecture in transcription regulation. Finally, we discuss the role of 3D genome alterations in the aetiology of developmental disorders and human diseases.


Assuntos
Diferenciação Celular , Cromatina/metabolismo , Regulação da Expressão Gênica , Genoma Humano , Células-Tronco/metabolismo , Transcrição Gênica , Animais , Cromatina/genética , Humanos
3.
Mol Cell ; 82(7): 1297-1312.e8, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35219381

RESUMO

Synthetic lethality through combinatorial targeting DNA damage response (DDR) pathways provides exciting anticancer therapeutic benefit. Currently, the long noncoding RNAs (lncRNAs) have been implicated in tumor drug resistance; however, their potential significance in DDR is still largely unknown. Here, we report that a human lncRNA, CTD-2256P15.2, encodes a micropeptide, named PAR-amplifying and CtIP-maintaining micropeptide (PACMP), with a dual function to maintain CtIP abundance and promote poly(ADP-ribosyl)ation. PACMP not only prevents CtIP from ubiquitination through inhibiting the CtIP-KLHL15 association but also directly binds DNA damage-induced poly(ADP-ribose) chains to enhance PARP1-dependent poly(ADP-ribosyl)ation. Targeting PACMP alone inhibits tumor growth by causing a synthetic lethal interaction between CtIP and PARP inhibitions and confers sensitivity to PARP/ATR/CDK4/6 inhibitors, ionizing radiation, epirubicin, and camptothecin. Our findings reveal that a lncRNA-derived micropeptide regulates cancer progression and drug resistance by modulating DDR, whose inhibition could be employed to augment the existing anticancer therapeutic strategies.


Assuntos
Endodesoxirribonucleases , Neoplasias , Peptídeos , Poli ADP Ribosilação , RNA Longo não Codificante , Reparo do DNA , Endodesoxirribonucleases/metabolismo , Humanos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Peptídeos/farmacologia , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
Mol Cell ; 77(4): 734-747.e7, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31812350

RESUMO

Mutation and prevalence of pathogenic viruses prompt the development of broad-spectrum antiviral strategies. Viperin is a potent antiviral protein that inhibits a broad range of viruses. Unexpectedly, we found that Viperin protein production in epithelium is defective in response to both viruses and interferons (IFNs). We further revealed that viruses and IFNs stimulate expression of the acetyltransferase HAT1, which induces Lys197-acetylation on Viperin. Viperin acetylation in turn recruits UBE4A that stimulates K6-linked polyubiquitination at Lys206 of Viperin, leading to Viperin protein degradation. Importantly, UBE4A deficiency restores Viperin protein production in epithelium. We then designed interfering peptides (IPs) to inhibit UBE4A binding with Viperin. We found that VIP-IP3 rescues Viperin protein production in epithelium and therefore enhances cellular antiviral activity. VIP-IP3 renders mice more resistant to viral infection. These findings could provide strategies for both enhancing host broad-spectrum antiviral response and improving the efficacy of IFN-based antiviral therapy.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/virologia , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Acetilação , Animais , Linhagem Celular , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Humanos , Interferons/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Peptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
5.
Mol Cell ; 79(2): 234-250.e9, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32579944

RESUMO

Somatic cell nuclear transfer (SCNT) can reprogram a somatic nucleus to a totipotent state. However, the re-organization of 3D chromatin structure in this process remains poorly understood. Using low-input Hi-C, we revealed that, during SCNT, the transferred nucleus first enters a mitotic-like state (premature chromatin condensation). Unlike fertilized embryos, SCNT embryos show stronger topologically associating domains (TADs) at the 1-cell stage. TADs become weaker at the 2-cell stage, followed by gradual consolidation. Compartments A/B are markedly weak in 1-cell SCNT embryos and become increasingly strengthened afterward. By the 8-cell stage, somatic chromatin architecture is largely reset to embryonic patterns. Unexpectedly, we found cohesin represses minor zygotic genome activation (ZGA) genes (2-cell-specific genes) in pluripotent and differentiated cells, and pre-depleting cohesin in donor cells facilitates minor ZGA and SCNT. These data reveal multi-step reprogramming of 3D chromatin architecture during SCNT and support dual roles of cohesin in TAD formation and minor ZGA repression.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Cromatina/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Técnicas de Transferência Nuclear , Zigoto/fisiologia , Animais , Linhagem Celular , Núcleo Celular , Montagem e Desmontagem da Cromatina , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Desenvolvimento Embrionário , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coesinas
6.
Mol Cell ; 77(4): 825-839.e7, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31837995

RESUMO

In mammals, chromatin organization undergoes drastic reorganization during oocyte development. However, the dynamics of three-dimensional chromatin structure in this process is poorly characterized. Using low-input Hi-C (genome-wide chromatin conformation capture), we found that a unique chromatin organization gradually appears during mouse oocyte growth. Oocytes at late stages show self-interacting, cohesin-independent compartmental domains marked by H3K27me3, therefore termed Polycomb-associating domains (PADs). PADs and inter-PAD (iPAD) regions form compartment-like structures with strong inter-domain interactions among nearby PADs. PADs disassemble upon meiotic resumption from diplotene arrest but briefly reappear on the maternal genome after fertilization. Upon maternal depletion of Eed, PADs are largely intact in oocytes, but their reestablishment after fertilization is compromised. By contrast, depletion of Polycomb repressive complex 1 (PRC1) proteins attenuates PADs in oocytes, which is associated with substantial gene de-repression in PADs. These data reveal a critical role of Polycomb in regulating chromatin architecture during mammalian oocyte growth and early development.


Assuntos
Cromatina/química , Oócitos/crescimento & desenvolvimento , Oogênese/genética , Proteínas do Grupo Polycomb/fisiologia , Animais , Blastocisto/química , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Embrião de Mamíferos/química , Inativação Gênica , Código das Histonas , Camundongos , Oócitos/química , Transcrição Gênica , Coesinas
7.
Proc Natl Acad Sci U S A ; 121(8): e2307656121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38315821

RESUMO

Despite the significant scientific advancement in deciphering the "deaths of despair" narrative, most relevant studies have focused on drug-, alcohol-, and suicide-related (DAS) deaths. This study directly investigated despair as a determinant of death and the temporal variation and racial heterogeneity among individuals. We used psychological distress (PD) as a proxy for despair and drew data from the US National Health Interview Survey-Linked Mortality Files 1997 to 2014, CDC (Centers for Disease Control and Prevention) Multiple Cause of Death database 1997 to 2014, CDC bridged-race population files 1997 to 2014, Current Population Survey 1997 to 1999, and the American Community Survey 2000 to 2014. We used Cox proportional hazards models to estimate mortality hazard ratios of PD and compared age-standardized PD- and DAS-related mortality rates by race/ethnicity and over time. We found that while Whites had a lower prevalence of PD than Blacks and Hispanics throughout the whole period, they underwent distinctive increases in PD-related death and have had a higher PD-related mortality rate than Blacks and Hispanics since the early 2000s. This was predominantly due to Whites' relatively high and increasing vulnerability to PD less the prevalence of PD. Furthermore, PD induced a more pervasive mortality consequence than DAS combined for Whites and Blacks. In addition, PD- and DAS-related deaths displayed a concordant trend among Whites but divergent patterns for Blacks and Hispanics. These findings suggest that 1) DAS-related deaths underestimated the mortality consequence of despair for Whites and Blacks but overestimated it for Hispanics; and 2) despair partially contributed to the DAS trend among Whites but probably not for Blacks and Hispanics.


Assuntos
Morte , Etnicidade , Angústia Psicológica , Estresse Psicológico , Humanos , Etnicidade/psicologia , Etnicidade/estatística & dados numéricos , Hispânico ou Latino/psicologia , Hispânico ou Latino/estatística & dados numéricos , Estados Unidos/epidemiologia , Brancos/psicologia , Brancos/estatística & dados numéricos , Estresse Psicológico/epidemiologia , Estresse Psicológico/etnologia , Estresse Psicológico/mortalidade , Negro ou Afro-Americano/psicologia , Negro ou Afro-Americano/estatística & dados numéricos
8.
Proc Natl Acad Sci U S A ; 121(10): e2310409121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38427603

RESUMO

Ovarian immature teratomas (OITs) are malignant tumors originating from the ovarian germ cells that mainly occur during the first 30 y of a female's life. Early age of onset strongly suggests the presence of susceptibility gene mutations for the disease yet to be discovered. Whole exon sequencing was used to screen pathogenic mutations from pedigrees with OITs. A rare missense germline mutation (C262T) in the first exon of the BMP15 gene was identified. In silico calculation suggested that the mutation could impair the formation of mature peptides. In vitro experiments on cell lines confirmed that the mutation caused an 84.7% reduction in the secretion of mature BMP15. Clinical samples from OIT patients also showed a similar pattern of decrease in the BMP15 expression. In the transgenic mouse model, the spontaneous parthenogenetic activation significantly increased in oocytes carrying the T allele. Remarkably, a mouse carrying the T allele developed the phenotype of OIT. Oocyte-specific RNA sequencing revealed that abnormal activation of the H-Ras/MAPK pathway might contribute to the development of OIT. BMP15 was identified as a pathogenic gene for OIT which improved our understanding of the etiology of OIT and provided a potential biomarker for genetic screening of this disorder.


Assuntos
Mutação de Sentido Incorreto , Teratoma , Humanos , Feminino , Camundongos , Animais , Mutação em Linhagem Germinativa , Oócitos/fisiologia , Ovário , Proteína Morfogenética Óssea 15/genética , Teratoma/genética
9.
Cell ; 146(3): 448-61, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21782231

RESUMO

In response to viral infection, RIG-I-like RNA helicases bind to viral RNA and activate the mitochondrial protein MAVS, which in turn activates the transcription factors IRF3 and NF-κB to induce type I interferons. [corrected] We have previously shown that RIG-I binds to unanchored lysine-63 (K63) polyubiquitin chains and that this binding is important for MAVS activation; however, the mechanism underlying MAVS activation is not understood. Here, we show that viral infection induces the formation of very large MAVS aggregates, which potently activate IRF3 in the cytosol. We find that a fraction of recombinant MAVS protein forms fibrils that are capable of activating IRF3. Remarkably, the MAVS fibrils behave like prions and effectively convert endogenous MAVS into functional aggregates. We also show that, in the presence of K63 ubiquitin chains, RIG-I catalyzes the conversion of MAVS on the mitochondrial membrane to prion-like aggregates. These results suggest that a prion-like conformational switch of MAVS activates and propagates the antiviral signaling cascade.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Imunidade Inata , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Dados de Sequência Molecular , Poliubiquitina/metabolismo , Príons/metabolismo , Estrutura Terciária de Proteína , Receptores do Ácido Retinoico/metabolismo , Vírus Sendai , Transdução de Sinais , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo
10.
Bioessays ; 46(3): e2300203, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38175843

RESUMO

Cells contain a myriad of membraneless ribonucleoprotein (RNP) condensates with distinct compositions of proteins and RNAs. RNP condensates participate in different cellular activities, including RNA storage, mRNA translation or decay, stress response, etc. RNP condensates are assembled via liquid-liquid phase separation (LLPS) driven by multivalent interactions. Transition of RNP condensates into bodies with abnormal material properties, such as solid-like amyloid structures, is associated with the pathogenesis of various diseases. In this review, we focus on how RNAs regulate multiple aspects of RNP condensates, such as dynamic assembly and/or disassembly and biophysical properties. RNA properties - including concentration, sequence, length and structure - also determine the phase behaviors of RNP condensates. RNA is also involved in specifying autophagic degradation of RNP condensates. Unraveling the role of RNA in RNPs provides novel insights into pathological accumulation of RNPs in various diseases. This new understanding can potentially be harnessed to develop therapeutic strategies.


Assuntos
Condensados Biomoleculares , RNA , RNA/genética , Ribonucleoproteínas/metabolismo , Autofagia
11.
Eur J Immunol ; : e2350815, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778507

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia among the elderly population. Despite its widespread prevalence, our comprehension of the intricate mechanisms governing the pathogenesis of the disease remains incomplete, posing a challenge for the development of efficient therapies. Pathologically characterized by the presence of amyloid ß plaques and neurofibrillary tau tangles, AD is also accompanied by the hyperactivation of glial cells and the immune system. The complement cascade, the evolutionarily conserved innate immune pathway, has emerged as a significant contributor to AD. This review focuses on one of the complement components, the C3a receptor (C3aR), covering its structure, ligand-receptor interaction, intracellular signaling and its functional consequences. Drawing insights from cellular and AD mouse model studies, we present the multifaceted role of complement C3aR signaling in AD and attempt to convey to the readers that C3aR acts as a crucial immune and metabolic modulator to influence AD pathogenesis. Building on this framework, the objective of this review is to inform future research endeavors and facilitate the development of therapeutic strategies for this challenging condition.

12.
Blood ; 141(12): 1474-1488, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36574342

RESUMO

Disorders of the ubiquitin-proteasome system (UPS) are known to influence the incidence and mortality of various diseases. It remains largely unknown whether and how the UPS affects the onset and progression of acute graft-verus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). This study demonstrated that the deubiquitinase OTUD1 is an essential regulator of aGVHD. Activation of CD4+ T cells after allo-HSCT, elevated the protein levels of OTUD1, which in turn interacted with the Notch2-ICD (NICD) to cleave the ubiquitin of NICD at the K1770 site, thereby inducing NICD protein accumulations in T cells. OTUD1-driven NICD signaling promoted the differentiation and functions of Th1 and Th17 cells and amplified the cascade of aGVHD. Moreover, by screening a FDA-approved drugs library the study identified dapagliflozin as an inhibitor targeting the OTUD1/NICD axis. Dapagliflozin administration significantly prolonged the survival of aGVHD mice. This study characterized a previously unknown role of OTUD1 in T cell-mediated allogeneic responses and provided a promising therapeutic strategy to target OTUD1 for the alleviation of aGVHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Camundongos , Doença Aguda , Linfócitos T CD4-Positivos/metabolismo , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Ubiquitinas
13.
EMBO Rep ; 24(4): e56374, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36876523

RESUMO

ACE2 is a major receptor for cellular entry of SARS-CoV-2. Despite advances in targeting ACE2 to inhibit SARS-CoV-2 binding, strategies to flexibly and sufficiently reduce ACE2 levels for the prevention of SARS-CoV-2 infection have not been explored. Here, we reveal vitamin C (VitC) administration as a potent strategy to prevent SARS-CoV-2 infection. VitC reduces ACE2 protein levels in a dose-dependent manner, while even a partial reduction in ACE2 levels can greatly inhibit SARS-CoV-2 infection. Further studies reveal that USP50 is a crucial regulator of ACE2 levels. VitC blocks the USP50-ACE2 interaction, thus promoting K48-linked polyubiquitination of ACE2 at Lys788 and subsequent degradation of ACE2 without affecting its transcriptional expression. Importantly, VitC administration reduces host ACE2 levels and greatly blocks SARS-CoV-2 infection in mice. This study reveals that ACE2 protein levels are down-regulated by an essential nutrient, VitC, thereby enhancing protection against infection of SARS-CoV-2 and its variants.


Assuntos
COVID-19 , Animais , Camundongos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Ácido Ascórbico/farmacologia
14.
Mol Ther ; 32(4): 910-919, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38351611

RESUMO

The miniature V-F CRISPR-Cas12f system has been repurposed for gene editing and transcription modulation. The small size of Cas12f satisfies the packaging capacity of adeno-associated virus (AAV) for gene therapy. However, the efficiency of Cas12f-mediated transcriptional activation varies among different target sites. Here, we developed a robust miniature Cas-based transcriptional activation or silencing system using Un1Cas12f1. We engineered Un1Cas12f1 and the cognate guide RNA and generated miniCRa, which led to a 1,319-fold increase in the activation of the ASCL1 gene. The activity can be further increased by tethering DNA-binding protein Sso7d to miniCRa and generating SminiCRa, which reached a 5,628-fold activation of the ASCL1 gene and at least hundreds-fold activation at other genes examined. We adopted these mutations of Un1Cas12f1 for transcriptional repression and generated miniCRi or SminiCRi, which led to the repression of ∼80% on average of eight genes. We generated an all-in-one AAV vector AIOminiCRi used to silence the disease-related gene SERPINA1. AIOminiCRi AAVs led to the 70% repression of the SERPINA1 gene in the Huh-7 cells. In summary, miniCRa, SminiCRa, miniCRi, and SminiCRi are robust miniature transcriptional modulators with high specificity that expand the toolbox for biomedical research and therapeutic applications.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes , Ativação Transcricional , Terapia Genética
15.
J Am Chem Soc ; 146(19): 12883-12888, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709642

RESUMO

Polyamides represent one class of materials that is important in modern society. Because of the numerous potential applications of polyamides in various fields, there is a high demand for new polyamide structures, which necessitates the development of new polymerization methods. Herein, we report a novel and efficient palladium-catalyzed hydroaminocarbonylative polymerization of dienes and diamines for the synthesis of cycloaliphatic polyamides. The method employs readily available starting materials, proceeds in an atom-economic manner, and creates a series of new functional polyamides in high yields and high molecular weights. In contrast with the traditional polyamides based on adipic acid, the cycloaliphatic polyamides have superior thermal resistance, higher glass-transition temperature, and better solubility in common organic solvents, thus probably featuring the merits of high-performance and good processability.

16.
EMBO J ; 39(8): e102961, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32090361

RESUMO

Both metabolic switch from oxidative phosphorylation to glycolysis (OGS) and epithelial-mesenchymal transition (EMT) promote cellular reprogramming at early stages. However, their connections have not been elucidated. Here, when a chemically defined medium was used to induce early EMT during mouse reprogramming, a facilitated OGS was also observed at the same time. Additional investigations suggested that the two events formed a positive feedback loop via transcriptional activation, cooperated to upregulate epigenetic factors such as Bmi1, Ctcf, Ezh2, Kdm2b, and Wdr5, and accelerated pluripotency induction at the early stage. However, at late stages, by over-inducing glycolysis and preventing the necessary mesenchymal-epithelial transition, the two events trapped the cells at a new pluripotency state between naïve and primed states and inhibited further reprogramming toward the naïve state. In addition, the pluripotent stem cells at the new state have high similarity to epiblasts from E4.5 and E5.5 embryos, and have distinct characteristics from the previously reported epiblast-like or formative states. Therefore, the time-dependent cooperation between OGS and EMT in regulating pluripotency should extend our understanding of related fields.


Assuntos
Reprogramação Celular , Transição Epitelial-Mesenquimal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Glicólise , Fosforilação Oxidativa , Células-Tronco Pluripotentes/metabolismo , Animais , Blastocisto , Feminino , Humanos , Camundongos , Camundongos Endogâmicos ICR , Regulação para Cima
17.
Eur J Immunol ; 53(9): e2350384, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37194705

RESUMO

Type I IFN (IFN-I) is the body's first line of defense against pathogen infection. IFN-I can induce cellular antiviral responses and therefore plays a key role in driving antiviral innate and adaptive immunity. Canonical IFN-I signaling activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which induces the expression of IFN-stimulated genes and eventually establishes a complex antiviral state in the cells. Ubiquitin is a ubiquitous cellular molecule for protein modifications, and the ubiquitination modifications of protein have been recognized as one of the key modifications that regulate protein levels and/or signaling activation. Despite great advances in understanding the ubiquitination regulation of many signaling pathways, the mechanisms by which protein ubiquitination regulates IFN-I-induced antiviral signaling have not been explored until very recently. This review details the current understanding of the regulatory network of ubiquitination that critically controls the IFN-I-induced antiviral signaling pathway from three main levels, including IFN-I receptors, IFN-I-induced cascade signals, and effector IFN-stimulated genes.


Assuntos
Antivirais , Interferon Tipo I , Imunidade Inata , Transdução de Sinais , Ubiquitinação
18.
J Virol ; 97(10): e0078623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796126

RESUMO

IMPORTANCE: EV71 poses a significant health threat to children aged 5 and below. The process of EV71 infection and replication is predominantly influenced by ubiquitination modifications. Our previous findings indicate that EV71 prompts the activation of host deubiquitinating enzymes, thereby impeding the host interferon signaling pathway as a means of evading the immune response. Nevertheless, the precise mechanisms by which the host employs ubiquitination modifications to hinder EV71 infection remain unclear. The present study demonstrated that the nonstructural protein 2Apro, which is encoded by EV71, exhibits ubiquitination and degradation mediated by the host E3 ubiquitin ligase SPOP. In addition, it is the first report, to our knowledge, that SPOP is involved in the host antiviral response.


Assuntos
Cisteína Endopeptidases , Enterovirus Humano A , Infecções por Enterovirus , Interações entre Hospedeiro e Microrganismos , Ubiquitina-Proteína Ligases , Ubiquitina , Ubiquitinação , Proteínas Virais , Criança , Humanos , Enterovirus Humano A/enzimologia , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Cisteína Endopeptidases/metabolismo
19.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624922

RESUMO

SUMMARY: Mass spectrometry (MS)-based proteomics has become the most powerful approach to study the proteome of given biological and clinical samples. Advancements in sample preparation and MS detection have extended the application of proteomics but have also brought new demands on data analysis. Appropriate proteomics data analysis workflow mainly requires quality control, hypothesis testing, functional mining, and visualization. Although there are numerous tools for each process, an efficient and universal tandem analysis toolkit to obtain a quick overall view of various proteomics data is still urgently needed. Here, we present DEP2, an updated version of DEP we previously established, for proteomics data analysis. We amended the analysis workflow by incorporating alternative approaches to accommodate diverse proteomics data, introducing peptide-protein summarization and coupling biological function exploration. In summary, DEP2 is a well-rounded toolkit designed for protein- and peptide-level quantitative proteomics data. It features a more flexible differential analysis workflow and includes a user-friendly Shiny application to facilitate data analysis. AVAILABILITY AND IMPLEMENTATION: DEP2 is available at https://github.com/mildpiggy/DEP2, released under the MIT license. For further information and usage details, please refer to the package website at https://mildpiggy.github.io/DEP2/.


Assuntos
Análise de Dados , Proteômica , Espectrometria de Massas , Proteoma , Controle de Qualidade
20.
J Transl Med ; 22(1): 283, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491378

RESUMO

The activation of glycolysis, particularly in the context of reprogrammed energy metabolism, is increasingly recognized as a significant characteristic of cancer. However, the precise mechanisms by which glycolysis is promoted in metastatic gastric cancer cells under normal oxygen conditions remain poorly understood. MicroRNAs (miRNAs) play a crucial role in the development of malignant phenotypes in gastric cancer. Nevertheless, our understanding of the specific involvement of miRNAs in hypoxia-induced metabolic shifting and the subsequent metastatic processes is limited. Hypoxia-induced downregulation of miR-598-3p mechanistically leads to the upregulation of RMP and IGF1r, thereby promoting glycolysis. Either overexpression of miR-598-3p or R406 treatment effectively suppresses the metastasis of gastric cancer cells both in vitro and in vivo. Collectively, the depletion of miR-598-3p alters glucose metabolism from oxidative phosphorylation to glycolysis, thereby exacerbating the malignancy of gastric cancer cells. The present findings indicate a potential target for the development of therapeutics against gastric cancers with increased miR-598-3p expression.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Hipóxia/genética , Glicólise/genética , Proliferação de Células/genética , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA