Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R567-R577, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646812

RESUMO

Postexercise reduction in blood pressure, termed postexercise hypotension (PEH), is relevant for both acute and chronic health reasons and potentially for peripheral cardiovascular adaptations. We investigated the interactive effects of exercise intensity and recovery postures (seated, supine, and standing) on PEH. Thirteen normotensive men underwent a V̇o2max test on a cycle ergometer and five exhaustive constant load trials to determine critical power (CP) and the gas exchange threshold (GET). Subsequently, work-matched exercise trials were performed at two discrete exercise intensities (10% > CP and 10% < GET), with 1 h of recovery in each of the three postures. For both exercise intensities, standing posture resulted in a more substantial PEH (all P < 0.01). For both standing and seated recovery postures, the higher exercise intensity led to larger reductions in systolic [standing: -33 (11) vs. -21 (8) mmHg; seated: -34 (32) vs. -17 (37) mmHg, P < 0.01], diastolic [standing: -18 (7) vs. -8 (5) mmHg; seated: -10 (10) vs. -1 (4) mmHg, P < 0.01], and mean arterial pressures [-13 (8) vs. -2 (4) mmHg, P < 0.01], whereas in the supine recovery posture, the reduction in diastolic [-9 (9) vs. -4 (3) mmHg, P = 0.08) and mean arterial pressures [-7 (5) vs. -3 (4) mmHg, P = 0.06] was not consistently affected by prior exercise intensity. PEH is more pronounced during recovery from exercise performed above CP versus below GET. However, the effect of exercise intensity on PEH is largely abolished when recovery is performed in the supine posture.NEW & NOTEWORTHY The magnitude of postexercise hypotension is greater following the intensity above the critical power in a standing position.


Assuntos
Pressão Sanguínea , Exercício Físico , Hipotensão Pós-Exercício , Postura , Humanos , Masculino , Exercício Físico/fisiologia , Adulto , Pressão Sanguínea/fisiologia , Postura/fisiologia , Hipotensão Pós-Exercício/fisiopatologia , Adulto Jovem , Decúbito Dorsal , Recuperação de Função Fisiológica , Posição Ortostática , Postura Sentada , Hipotensão/fisiopatologia , Consumo de Oxigênio
2.
Food Chem ; 461: 140796, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39153371

RESUMO

In order to delay the retrogradation of rice starch, the effects of three different chain length fatty acids (lauric acid, myristic acid and palmitic acid) on rice starch were studied. The fatty acids with longer carbon chains had strong steric hindrance and hydrophobicity, which formed a more compact structure in the helical cavity of amylose, and significantly reduced degree of expansion, migration of water, short-range ordered structure, number of double helical structures and crystallinity. These structural changes endowed the rice starch-long chain fatty acid complexes with better gel viscosity, liquid fluidity and thermal stability than in the rice starch-short chain fatty acid complexes. The results showed that fatty acids with longer chain length inhibited the retrogradation of rice starch, most obviously when 5% palmitic acid was added. This study provides an important reference for the processing of rice starch-based foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA