RESUMO
Algae and macrophytes in lake ecosystems regulate nitrous oxide (N2O) emissions from eutrophic lakes. However, knowledge of diurnal N2O emission patterns from different habitats remains limited. To understand the diurnal patterns and driving mechanisms of N2O emissions from contrasting habitats, continuous in situ observations (72 h) of N2O fluxes from an algae-dominated zone (ADZ) and reed-dominated zone (RDZ) in Lake Taihu were conducted using the Floating Chamber method. The results showed average N2O emission fluxes of 0.15 ± 0.06 and 0.02 ± 0.04 µmol m-2 h-1 in the ADZ and RDZ in autumn, respectively. The significantly higher (p < 0.05) N2O fluxes in the ADZ were mainly attributed to differences in nitrogen (N) levels. The results also showed significant diurnal differences (p < 0.05) in the N2O emission fluxes within the ADZ and RDZ, and daytime fluxes were significantly higher (p < 0.05) than nighttime fluxes. The statistical results indicated that N2O emissions from the ADZ were mainly driven by diurnal variations in N loading and the dissolved oxygen (DO) concentration, and those from the RDZ were more influenced by DO, redox potential, and pH. Finally, we determined the proper time for routine monitoring of N2O flux in the two habitats. Our results highlight the importance of considering diverse habitats and diurnal variations when estimating N2O budgets at a whole-lake scale.
Assuntos
Ecossistema , Lagos , Óxido Nitroso , Óxido Nitroso/análise , Lagos/química , China , Monitoramento Ambiental , Ritmo Circadiano , Eutrofização , Poluentes Atmosféricos/análiseRESUMO
Spleen tyrosine kinase (SYK) is a non-receptor cytoplasmic kinase. Due to its pivotal role in B cell receptor and Fc-receptor signalling, inhibition of SYK has been a target of interest in a variety of diseases. Herein, we report the use of structure-based drug design to discover a series of potent macrocyclic inhibitors of SYK, with excellent kinome selectivity and in vitro metabolic stability. We were able to remove hERG inhibition through the optimization of physical properties, and utilized a pro-drug strategy to address permeability challenges.
Assuntos
Proteínas Tirosina Quinases , Transdução de Sinais , Quinase Syk , Inibidores de Proteínas Quinases/farmacologiaRESUMO
ß-Amino carbonyl substructures are privileged motifs in natural products and active pharmaceutical compounds. Here, we report a photoinduced metal-free and highly regioselective intermolecular carboimination method via the simultaneous introduction of amino and carbonyl groups into the CîC double bond in one step, providing straightforward, green and general access to both ß-amino acid and ß-amino ketone motifs from readily available alkene feedstocks. The mild reaction conditions, excellent functional group tolerance and product diversity should make this a broadly applicable carboimination approach of very broad interest to organic and medicinal chemists.
Assuntos
Alcenos , Produtos Biológicos , Alcenos/química , Aminoácidos/química , Cetonas/química , Metais , Preparações FarmacêuticasRESUMO
Based on our previous research, thirty new 5-amino-1H-1,2,4-triazoles possessing 3,4,5-trimethoxyphenyl moiety were synthesized, and evaluated for antiproliferative activities. Among them, compounds IIa, IIIh, and IIIm demonstrated significant antiproliferative activities against a panel of tumor cell lines, and the promising compound IIIm dose-dependently caused G2/M phase arrest in HeLa cells. Furthermore, analogue IIa exhibited the most potent tubulinpolymerization inhibitory activity with an IC50 value of 9.4 µM, and molecular modeling studies revealed that IIa formed stable interactions in the colchicine-binding site of tubulin, suggesting that 5-amino-1H-1,2,4-triazole scaffold has potential for further investigation to develop novel tubulin polymerization inhibitors with anticancer activity.
Assuntos
Antineoplásicos/farmacologia , Triazóis/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estrutura Molecular , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/químicaRESUMO
Spleen tyrosine kinase (SYK) is a non-receptor cytosolic kinase. Due to its pivotal role in B cell receptor and Fc-receptor signaling, inhibition of SYK has been targeted in a variety of disease areas. Herein, we report the optimization of a series of potent and selective SYK inhibitors, focusing on improving metabolic stability, pharmacokinetics and hERG inhibition. As a result, we identified 30, which exhibited no hERG activity but unfortunately was poorly absorbed in rats and mice. We also identified a SYK chemical probe, 17, which exhibits excellent potency at SYK, and an adequate rodent PK profile to support in vivo efficacy/PD studies.
Assuntos
Indazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinase Syk/antagonistas & inibidores , Animais , Sítios de Ligação , Células CACO-2 , Cristalografia por Raios X , Canal de Potássio ERG1/antagonistas & inibidores , Humanos , Indazóis/síntese química , Indazóis/metabolismo , Indazóis/farmacocinética , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Ratos Wistar , Relação Estrutura-Atividade , Quinase Syk/química , Quinase Syk/metabolismoRESUMO
Aberrant hedgehog (Hh) pathway signaling is implicated in multiple cancer types and targeting the Smoothened (SMO) receptor, a key protein of the Hh pathway, has proven effective in treating metastasized basal cell carcinoma. Our lead optimization effort focused on a series of heteroarylamides. We observed that a methyl substitution ortho to the heteroaryl groups on an aniline core significantly improved the potency of this series of compounds. These findings predated the availability of SMO crystal structure in 2013. Here we retrospectively applied quantum mechanics calculations to demonstrate the o-Me substitution favors the bioactive conformation by inducing a dihedral twist between the heteroaryl rings and the core aniline. The o-Me also makes favorable hydrophobic interactions with key residue side chains in the binding pocket. From this effort, two compounds (AZD8542 and AZD7254) showed excellent pharmacokinetics across multiple preclinical species and demonstrated in vivo activity in abrogating the Hh paracrine pathway as well as anti- tumor effects.
Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Descoberta de Drogas , Imidazóis/farmacologia , Receptor Smoothened/antagonistas & inibidores , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Benzamidas/síntese química , Benzamidas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/síntese química , Imidazóis/química , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , Receptor Smoothened/metabolismo , Relação Estrutura-Atividade , Proteína GLI1 em Dedos de Zinco/metabolismoRESUMO
INTRODUCTION: Thrombocytopenia occasionally occurs following the closure of some giant patent ductus arteriosus cases. Unfortunately, there is no associated research describing the associated risk factors for thrombocytopenia post-procedure. METHODS: We reviewed all patients who received occluders with sizes ≥10/12 mm between January 2013 and June 2019. All the data and information on the characteristics of the patients and their follow-up were recorded. Univariate analysis, receiver operating characteristic curves, and linear regression were used to analyse the risk factors for thrombocytopenia and the predictors of hospitalisation stay. RESULTS: Finally, 32 patients (17.5%) suffered from thrombocytopenia. Univariate analysis revealed the ratio between occluder disc size (mm) and body weight (kg) (1.71 ± 0.51 versus 1.35 ± 0.53) as an independent predictive factor for thrombocytopenia, and the area under the curve of the ratio of occluder size and body weight for predicting thrombocytopenia post-closure was 0.691 (95% confidence interval: 0.589-0.792, p = 0.001). The best cut-off value for the ratio of occluder size and weight was 1.5895, with a sensitivity and specificity of 68.8 and 66.9%, respectively. Each unit of the ratio of occluder size and body weight predicted an average hospitalisation stay of 2.856 days (95% confidence interval: 1.380-4.332). Treatment with medication did not reduce the hospitalisation stay or benefit platelet restoration. CONCLUSION: Once the ratio of occluder size and body weight is greater than 1.6, thrombocytopenia always exists. Every unit of the ratio of occluder size and body weight represents an additional 3 days of hospitalisation. Treatment does not reduce the duration of hospitalisation.
Assuntos
Permeabilidade do Canal Arterial , Dispositivo para Oclusão Septal , Trombocitopenia , Peso Corporal , Cateterismo Cardíaco/efeitos adversos , Permeabilidade do Canal Arterial/cirurgia , Humanos , Dispositivo para Oclusão Septal/efeitos adversos , Trombocitopenia/epidemiologia , Trombocitopenia/etiologia , Resultado do TratamentoRESUMO
BACKGROUND: MicroRNA (miRNA) are key players in regulating expression of target genes at post-transcriptional level. A number of miRNAs are implicated in modulating tolerance to various abiotic stresses. Waterlogging is an abiotic stress that deters plant growth and productivity by hypoxia. Dozens of reports mention about the miRNAs expressed in response to waterlogging and hypoxia. Despite the fact that tomato is a model vegetable but waterlogging sensitive crop, the role of miRNAs in hypoxia tolerance is poorly understood in tomato. RESULTS: In this study, we investigated the differentially expressed miRNAs between hypoxia-treated and untreated wild tomato root by using high-throughput sequencing technology. A total of 33 known miRNAs were lowly expressed, whereas only 3 miRNAs showed higher expression in hypoxia-treated wild tomato root compared with untreated wild tomato root. Then two conserved and lowly expressed miRNAs, miR171 and miR390, were deactivated by Short Tandem Target Mimic (STTM) technology in Arabidopsis. As the results, the number and length of lateral roots were more in STTM171 and STTM390 transgenic lines compared with that of wild type plant, which partly phenocopy the increase root number and shortening the root length in hypoxia-treated wild tomato root. CONCLUSIONS: The differentially expressed miRNAs between hypoxia-treated wild tomato and control root, which contribute to the auxin homeostasis, morphologic change, and stress response, might result in reduction in the biomass and length of the root in hypoxiated conditions.
Assuntos
Ácidos Indolacéticos/metabolismo , MicroRNAs/genética , Oxigênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Solanum lycopersicum/genética , Biomassa , Homeostase , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , RNA de Plantas/genética , Estresse FisiológicoRESUMO
The design and synthesis of a novel series of 2,6-disubstituted pyrazine derivatives as CK2 kinase inhibitors is described. Structure-guided optimization of a 5-substituted-3-thiophene carboxylic acid screening hit (3a) led to the development of a lead compound (12b), which shows inhibition in both enzymatic and cellular assays. Subsequent design and hybridization efforts also led to the unexpected identification of analogs with potent PIM kinase activity (14f).
Assuntos
Caseína Quinase II/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Pirazinas/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Pirazinas/síntese química , Pirazinas/química , Pirazinas/farmacocinética , Relação Estrutura-AtividadeRESUMO
Phosphorylation of xenobiotics is rare, probably owing to a strong evolutionary pressure against it. This rarity may have attracted more attention recently as a result of intentionally designed kinase-substrate analogs that depend on kinase-catalyzed activation to form phosphorylated active drugs. We report a rare phosphorylated metabolite observed unexpectedly in mouse plasma samples after an oral dose of a Tankyrase inhibitor that was not intended to be a kinase substrate, i.e., (S)-2-(4-(6-(3,4-dimethylpiperazin-1-yl)-4-methylpyridin-3-yl)phenyl)-8-(hydroxymethyl)quinazolin-4(3H)-one (AZ2381). The phosphorylated metabolite was not generated in mouse hepatocytes. In vitro experiments showed that the phosphorylation of AZ2381 occurred in mouse whole blood with heparin as anticoagulant but not in mouse plasma. The phosphorylated metabolite was also produced in rat, dog, and human blood, albeit at lower yields than in mouse. Divalent metal ions are required for the phosphorylation since the reaction is inhibited by the metal chelator EDTA. Further investigations with different cellular fractions of mouse blood revealed that the phosphorylation of AZ2381 was mediated by erythrocytes but did not occur with leukocytes. The levels of 18O incorporation into the phosphorylated metabolite when inorganic 18O4-phosphate and γ-18O4-ATP were added to the mouse blood incubations separately suggested that the phosphoryl transfer was from inorganic phosphate rather than ATP. It remains unclear which enzyme present in red blood cells is responsible for this rare phosphorylation.
Assuntos
Eritrócitos/metabolismo , Fosfotransferases/metabolismo , Piperazinas/metabolismo , Quinazolinas/metabolismo , Tanquirases/antagonistas & inibidores , Xenobióticos/metabolismo , Administração Oral , Animais , Cães , Ácido Edético/farmacologia , Eritrócitos/efeitos dos fármacos , Feminino , Heparina/sangue , Heparina/metabolismo , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos SCID , Fosfatos/metabolismo , Fosforilação/efeitos dos fármacos , Piperazinas/sangue , Piperazinas/síntese química , Piperazinas/farmacologia , Quinazolinas/sangue , Quinazolinas/síntese química , Quinazolinas/farmacologia , Ratos , Xenobióticos/sangue , Xenobióticos/síntese química , Xenobióticos/farmacologiaRESUMO
Upregulation of Pim kinases is observed in several types of leukemias and lymphomas. Pim-1, -2, and -3 promote cell proliferation and survival downstream of cytokine and growth factor signaling pathways. AZD1208 is a potent, highly selective, and orally available Pim kinase inhibitor that effectively inhibits all three isoforms at <5 nM or <150 nM in enzyme and cell assays, respectively. AZD1208 inhibited the growth of 5 of 14 acute myeloid leukemia (AML) cell lines tested, and sensitivity correlates with Pim-1 expression and STAT5 activation. AZD1208 causes cell cycle arrest and apoptosis in MOLM-16 cells, accompanied by a dose-dependent reduction in phosphorylation of Bcl-2 antagonist of cell death, 4EBP1, p70S6K, and S6, as well as increases in cleaved caspase 3 and p27. Inhibition of p4EBP1 and p-p70S6K and suppression of translation are the most representative effects of Pim inhibition in sensitive AML cell lines. AZD1208 inhibits the growth of MOLM-16 and KG-1a xenograft tumors in vivo with a clear pharmacodynamic-pharmacokinetic relationship. AZD1208 also potently inhibits colony growth and Pim signaling substrates in primary AML cells from bone marrow that are Flt3 wild-type or Flt3 internal tandem duplication mutant. These results underscore the therapeutic potential of Pim kinase inhibition for the treatment of AML.
Assuntos
Apoptose/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Proliferação de Células/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Tiazolidinas/farmacologia , Animais , Compostos de Bifenilo/farmacocinética , Western Blotting , Ciclo Celular , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos SCID , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Tiazolidinas/farmacocinética , Distribuição Tecidual , Células Tumorais CultivadasRESUMO
During the lead generation and optimization of PARP inhibitors blocking centrosome clustering, it was discovered that increasing hydrogen bond acceptor (HBA) strength improved cellular potency but led to elevated Caco2 and MDR1 efflux and thus poor oral bioavailability. Conversely, compounds with lower efflux had reduced potency. The project team was able to improve the bioavailability by reducing efflux through systematic modifications to the strength of the HBA by changing the electronic properties of neighboring groups, whilst maintaining sufficient acceptor strength for potency. Additionally, it was observed that enantiomers with different potency showed similar efflux, which is consistent with the promiscuity of efflux transporters. Eventually, a balance between potency and low efflux was achieved for a set of lead compounds with good bioavailability which allowed the project to progress towards establishing in vivo pharmacokinetic/pharmacodynamic relationships.
Assuntos
Centrossomo/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Cães , Humanos , Ligação de Hidrogênio , Células Madin Darby de Rim Canino , Camundongos , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , RatosRESUMO
The propensity for cancer cells to accumulate additional centrosomes relative to normal cells could be exploited for therapeutic benefit in oncology. Following literature reports that suggested TNKS1 (tankyrase 1) and PARP16 may be involved with spindle structure and function and may play a role in suppressing multi-polar spindle formation in cells with supernumerary centrosomes, we initiated a phenotypic screen to look for small molecule poly (ADP-ribose) polymerase (PARP) enzyme family inhibitors that could produce a multi-polar spindle phenotype via declustering of centrosomes. Screening of AstraZeneca's collection of phthalazinone PARP inhibitors in HeLa cells using high-content screening techniques identified several compounds that produced a multi-polar spindle phenotype at low nanomolar concentrations. Characterization of these compounds across a broad panel of PARP family enzyme assays indicated that they had activity against several PARP family enzymes, including PARP1, 2, 3, 5a, 5b, and 6. Further optimization of these initial hits for improved declustering potency, solubility, permeability, and oral bioavailability resulted in AZ0108, a PARP1, 2, 6 inhibitor that potently inhibits centrosome clustering and is suitable for in vivo efficacy and tolerability studies.
Assuntos
Centrossomo/metabolismo , Ftalazinas/química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Administração Oral , Animais , Sítios de Ligação , Células CACO-2 , Centrossomo/efeitos dos fármacos , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Humanos , Microssomos/metabolismo , Conformação Molecular , Simulação de Dinâmica Molecular , Ftalazinas/administração & dosagem , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Estrutura Terciária de Proteína , Ratos , Tanquirases/antagonistas & inibidores , Tanquirases/metabolismoRESUMO
BACKGROUND: Diabetic neuropathic pain (DNP) is a complication of diabetes mellitus (DM). Hyperbaric lidocaine (HL), a local anesthetics drug, has neurotoxicity. The present study aims to study the effect and molecular mechanisms of HL on spinal nerve injury in DNP. METHODS: The DNP rat model was established through a high-fat-glucose diet in combination with Streptozotocin (STZ) administration. SB203580 and PD98059 were utilized to inhibit p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-regulated kinase (ERK). The mechanical paw withdrawal threshold (PWT) and the thermal paw withdrawal latency (PWL) were tested to evaluate rats' mechanical allodynia and thermal hyperalgesia. Hematoxylin-eosin (H&E) and terminal deoxynucleotidyltransferase-mediated dUTP nick-end Labeling (TUNEL) staining were performed to evaluate the pathological changes and neuron apoptosis in spinal cord tissues of L4-5. Western blotting analysis and reverse transcription-polymerase chain reaction (RT-qPCR) assay were used to measure the levels of proteins and mRNAs, respectively. RESULTS: PWT and PWL were decreased in DNP rats with serious spinal nerve injury. HL administration downregulated the PWT and PWL and aggravated spinal nerve injury in DNP rats, but isobaric lidocaine had no effects on these changes. Meanwhile, p38 MAPK/ERK signaling and PTEN-induced kinase 1 (PINK1)-mediated mitophagy were activated in DNP, which was enhanced by HL but not isobaric lidocaine. Blocking p38 MAPK/ERK signaling could effectively attenuate HL-induced spinal nerve injury and inhibit mitophagy. CONCLUSION: In summary, HL can aggravate spinal cord tissue damage in DNP rats by inducing PINK1-mediated mitophagy via activating p38 MAPK/ERK signaling. Our data provide a novel insight that supports the potential role of p38 MAPK/ERK signaling in acting as a therapeutic target for HL-induced neurotoxicity.
Assuntos
Neuropatias Diabéticas , Lidocaína , Mitofagia , Proteínas Quinases , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Lidocaína/farmacologia , Ratos , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/etiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Mitofagia/efeitos dos fármacos , Masculino , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
Ulinastatin, a broad-spectrum inflammatory inhibitor widely employed in the management of severe pancreatitis and sepsis, has not been extensively investigated for its therapeutic potential in bacterial meningitis. This study aims to assess the neuroprotective effects of ulinastatin on bacterial meningitis and elucidate its underlying mechanism. The rat model of bacterial meningitis was established by intracerebral injection of Escherichia coli. 3-week-old SD rats were randomly divided into 5 groups with 8 rats in each group, including control group, E.coli group, E.coli + UTI group (ulinastatin 50000IU/kg), E.coli + UTI + PMA group (ulinastatin 50000IU/kg + PMA 200 ug/kg), and E.coli + PMA group(PMA 200 ug/kg). Behavioral changes were assessed by Loeffler neurobehavioral score. Histomorphologic changes and apoptosis were assessed by hematoxylin and eosin staining, Nissl staining and TUNEL staining. Immunohistochemistry and immunofluorescence and western blotting were used to detect the expression levels of zonula occludens-1 (ZO-1) and phosphorylation protein kinase C (PKCα).It was found that ulinastatin treatment in Escherichia coli meningitis rats improved neurological function, alleviated meningeal inflammatory infiltration, reduced neuronal death, promoted the integrity of the blood-brain barrier structure. Moreover, phorbol myristate acetate (PMA, a protein kinase C activator), blocked the effective action of ulinastatin. These findings suggest that ulinastatin had neuroprotective effects on bacterial meningitis by inhibiting PKCα phosphorylation and reducing ZO-1 degradation, demonstrating that ulinastatin may be a promising strategy in the treatment of bacterial meningitis.
Assuntos
Glicoproteínas , Fármacos Neuroprotetores , Proteína Quinase C-alfa , Proteína da Zônula de Oclusão-1 , Animais , Masculino , Ratos , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Escherichia coli/efeitos dos fármacos , Glicoproteínas/farmacologia , Meningite devida a Escherichia coli/tratamento farmacológico , Meningite devida a Escherichia coli/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fosforilação/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Ratos Sprague-Dawley , Proteína da Zônula de Oclusão-1/metabolismoRESUMO
Antibiotics can generally be detected in the water-sediment systems of lakes. However, research on the migration and transformation of antibiotics in water-sediment systems based on the influences of light and wind waves is minimal. To address this research gap, we investigated the specific impacts of light and wind waves on the migration and transformation of three antibiotics, norfloxacin (NOR), trimethoprim (TMP), and sulfamethoxazole (SMX), under simulated light and wind waves disturbance conditions in a water-sediment system from Taihu Lake, China. In the overlying water, NOR was removed the fastest, followed by TMP and SMX. Compared to the no wind waves groups, the disturbance of big wind waves reduced the proportion of antibiotics in the overlying water. The contributions of light and wind waves to TMP and SMX degradation were greater than those of microbial degradation. However, the non-biological and biological contributions of NOR to degradation were almost equal. Wind waves had a significant impact on the microbial community changes in the sediment, especially in Methylophylaceae. These results verified the influence of light and wind waves on the migration and transformation of antibiotics, and provide assistance for the risk of antibiotic occurrence in water and sediments.
Assuntos
Antibacterianos , Sedimentos Geológicos , Sulfametoxazol , Poluentes Químicos da Água , Vento , Antibacterianos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/efeitos da radiação , Sulfametoxazol/química , Sedimentos Geológicos/química , Norfloxacino/química , Trimetoprima/química , Lagos/química , China , LuzRESUMO
Preservation of mitochondrial functionality is essential for heart hemostasis and cardiovascular diseases treatment. However, the current nanomedicines including liposomes, polymers and inorganic nanomaterials are severely hindered by poor stability, high manufacturing costs and potential biotoxicity. In this research, we present novel polyphenolic nanoparticles (NPs) derived from naturally occurring pomegranate peel (PP, labelled as PPP NPs), which exhibit potent antioxidative and anti-inflammatory properties, serving as a modulator of mitochondrial function. PPP NPs have been identified to improve survival rates in models of mitochondrial depletion through enhancement of cardiomyocyte proliferation and the reduction of DNA damage. Moreover, PPP NPs can effectively inhibit the production of reactive oxygen species and inflammatory mediators in lipopolysaccharide (LPS)-induced mitochondrial damage. Utilizing human engineered heart tissue and mice models, PPP NPs were found to significantly improve contractile function and alleviate inflammation activities after LPS treatment. Mechanically, PPP NPs regulated inflammatory responses via a m6A dependent manner, as determined using RNA-seq and MeRIP-seq analyses. Collectively, these insights underscore the potential of PPP NPs as a novel therapeutic approach for mitochondrial dysfunction.
Assuntos
Miócitos Cardíacos , Nanopartículas , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Animais , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Polifenóis/farmacologia , Dano ao DNA/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismoRESUMO
The potent and selective 3-amido-4-anilinoquinoline CSF-1R inhibitor AZ683 suffered from cardiovascular liabilities, which were linked to the off-target activities of the compound and ion channel activity in particular. Less basic and less lipophilic examples from both the quinoline and cinnoline series demonstrated cleaner secondary pharmacology profiles. Cinnoline 31 retained the required potency and oral PK profile, and was progressed through the safety screening cascade to be nominated into development as AZD7507.
Assuntos
Aminoquinolinas/síntese química , Aminoquinolinas/toxicidade , Compostos de Anilina/síntese química , Compostos de Anilina/toxicidade , Sistema Cardiovascular/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Compostos Heterocíclicos com 2 Anéis/síntese química , Compostos Heterocíclicos com 2 Anéis/toxicidade , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Animais , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Cobaias , Compostos Heterocíclicos com 2 Anéis/química , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Miócitos Cardíacos/efeitos dos fármacos , RatosRESUMO
BACKGROUND: Renal cell carcinoma (RCC) is a common malignancy. Local anesthetics were displayed powerful effects against various cancers. This study aims to probe the functions and molecular mechanism of ropivacaine in RCC. METHODS: Different concentrations of ropivacaine were performed to administrate RCC cells including 786-O and Caki-1 cells. Cell viability and cell apoptosis were examined using CCK-8 and flow cytometry, respectively. Cell migration and invasion were determined by transwell assay. RMRP and CCDC65 expression was firstly predicted using TCGA dataset and further validated in RCC cells using qRT-PCR and western blot. The interactions among RMRP, EZH2 and CCDC65 were verified by RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays. RESULTS: Ropivacaine effectively suppressed RCC cell viability, migration and invasion and enhanced cell apoptosis rate. Aberrantly elevated RMRP expression in RCC tissues was predicted by TCGA database. Interestingly, overexpressed RMRP observed in RCC cells could be also blocked upon the administration of ropivacaine. Likewise, RMRP knockdown further strengthened ropivacaine-mediated tumor suppressive effects on RCC cells. In terms of mechanism, RMRP directly interacted with EZH2, thereby modulating the histone methylation of CCDC65 to silence its expression. Moreover, ropivacaine inhibited tumor growth in mice bearing RCC tumor through regulating RMRP/EZH2/CCDC65 axis. CONCLUSION: In sum up, our work revealed that ropivacaine suppressed capacities of RCC cell viability, migration and invasion through modulating the RMRP/EZH2/CCDC65 axis, which laid the experimental foundation of ropivacaine for clinical application in the future.
RESUMO
BACKGROUND: Sepsis is a life-threatening condition that induce tens of million death each year, yet early diagnosis remains a formidable challenge. Many studies have focused on the diagnostic accuracy of microRNAs (miRNAs) for sepsis in recent years, particularly miR-155-5p, miR-21, miR-223-3p, miR-146a, and miR-125a. Thus, we conducted this meta-analysis to explore if miRNAs may be used as a biomarker for sepsis detection. METHODS: We searched PubMed, the Cochrane Central Register of Controlled Trials, EMBASE, and China National Knowledge Infrastructure through May 12, 2022. This meta-analysis was conducted using Meta-disc 1.4 and STATA 15.1 in a fixed/random-effect model. RESULTS: The analysis included a total of 50 relevant studies. The overall performance of total miRNAs detection was: pooled sensitivity, 0.76 (95% confidence interval [CI], 0.75 to 0.77); pooled specificity, 0.77 (95%CI, 0.75 to 0.78); and area under the summary receiver operating characteristic curves value (SROC), 0.86. The subgroup analysis suggested that detection in miR-155-5p group had the highest area under the curve (AUC) of SROC among all miRNAs: pooled sensitivity, 0.71 (95%CI, 0.67 to 0.75); pooled specificity, 0.82 (95%CI, 0.76 to 0.86); and SROC, 0.85. MiR-21, miR-223-3p, miR-146a, and miR-125a had SROC values of 0.67, 0.78, 0.69, and 0.74, respectively. The specimen type was found to be a source of heterogeneity in the meta-regression study. The SROC of serum was higher than that of plasma (0.87 and 0.83, respectively). CONCLUSIONS: Our meta-analysis revealed that miRNAs, specifically miR-155-5p, could be useful biomarkers for detecting sepsis. A clinical serum specimen is also indicated for diagnostic purposes.