RESUMO
Plant leaves can turn entirely absorbed light into chemical energy due to their spatially separated photosystems I and II in the thylakoid membrane that enables unidirectional Z-scheme type charge transfer between them. In artificial systems that mimic leaves, a lack of spatial and interfacial control of active units (i.e., hydrogen evolution photocatalyst/HEP and oxygen evolution photocatalyst/OEP) introduces competitive charge transfer channels between them, resulting in deficient Z-scheme type charge transfer. Herein, we demonstrate that a patterned photocatalyst sheet, namely, an artificial leaf, comprising an ordered and separated distribution of the OEP and HEP strips on a conductive substrate, achieves unidirectional Z-scheme type charge transfer as the leaves do. It represents a next-generation photocatalytic system that mimics the leaves to bring breakthrough in photocatalytic over water splitting performance with the combination of highly active HEP and OEP photocatalysts, opening up a promising avenue toward solar energy conversion by artificial photosynthesis.
RESUMO
Although 2D π-d conjugated metal-organic frameworks (MOFs) exhibit high in-plane conductivity, the closely stacked layers result in low specific surface area and difficulty in mass transfer and diffusion. Hence, a conductive 3D MOF Fe3(HITP)2/bpm@Co (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) is reported through inserting bpm (4,4'-bipyrimidine) ligands and Co2+ into the interlayers of 2D MOF Fe3(HITP)2. Compared to 2D Fe3(HITP)2 (37.23 m2 g-1), 3D Fe3(HITP)2/bpm@Co displays a huge improvement in the specific surface area (373.82 m2 g-1). Furthermore, the combined experimental and density functional theory (DFT) theoretical calculations demonstrate the metallic behavior of Fe3(HITP)2/bpm@Co, which will benefit to the electrocatalytic activity of it. Impressively, Fe3(HITP)2/bpm@Co exhibits prominent and stable oxygen evolution reaction (OER) performance (an overpotential of 299 mV vs RHE at a current density of 10 mA cm-2 and a Tafel slope of 37.14 mV dec-1), which is superior to 2D Fe3(HITP)2 and comparable to commercial IrO2. DFT theoretical calculation reveals that the combined action of the Fe and Co sites in Fe3(HITP)2/bpm@Co is responsible for the enhanced electrocatalytic activity. This work provides an alternative approach to develop conductive 3D MOFs as efficient electrocatalysts.
RESUMO
Photocatalytic ozonation is considered to be a promising approach for the treatment of refractory organic pollutants, but the design of efficient catalyst remains a challenge. Surface modification provides a potential strategy to improve the activity of photocatalytic ozonation. In this work, density functional theory (DFT) calculations were first performed to check the interaction between O3 and TiO2-OH (surface hydroxylated TiO2) or TiO2-F (surface fluorinated TiO2), and the results suggest that TiO2-OH displays better O3 adsorption and activation than does TiO2-F, which is confirmed by experimental results. The surface hydroxyl groups greatly promote the O3 activation, which is beneficial for the generation of reactive oxygen species (ROS). Importantly, TiO2-OH displays better performance towards pollutants (such as berberine hydrochloride) removal than does TiO2-F and most reported ozonation photocatalysts. The total organic carbon (TOC) removal efficiency reaches 84.4 % within two hours. This work highlights the effect of surface hydroxylation on photocatalytic ozonation and provides ideas for the design of efficient photocatalytic ozonation catalysts.
RESUMO
Oxygen vacancies (OVs) on specific sites/facets can strengthen the interaction between reactants and oxide surfaces, facilitating interfacial charge transfer. However, precise monitoring of the spatial distribution of OVs remains a grand challenge. We report here that a single-particle spectroscopy technique addresses this challenge by establishing a positive correlation relationship between defects and bound exciton luminescence across different facets. Taking monoclinic BiVO4 as an example, on the basis of theoretical guidance, by in situ tracking the PL lifetimes and PL spectra of different facets on single particles before and after hydrogen treatment, we provide evidence that the PL emission originates from the OV state and determine that OVs is more inclined to be generated at the {010} facets. This anisotropic defect engineering significantly prolongs the lifetime of carriers and accelerates the activation of molecular oxygen. These findings not only verify preference rules of OVs in metal oxides but also provide a time-space-resolved monitoring method.
RESUMO
Photocatalytic water splitting using semiconductors is a promising approach for converting solar energy to clean energy. However, challenges such as sluggish water oxidation kinetics and limited light absorption of photocatalyst cause low solar-to-hydrogen conversion efficiency (STH). Herein, we develop a photocatalytic overall water splitting system using I3 -/I- as the shuttle redox couple to bridge the H2-producing half-reaction with the O2-producing half-reaction. The system uses the halide perovskite of benzylammonium lead iodide (PMA2PbI4, PMA=C6H5CH2NH2) loaded with MoS2 (PMA2PbI4/MoS2) as the H2 evolution photocatalyst, and the RuOx-loaded WO3 (WO3/RuOx) as the O2 evolution photocatalyst, achieving a H2/O2 production in stoichiometric ratio with an excellent STH of 2.07 %. This work provides a detour route for photocatalytic water splitting with the help of I3 -/I- shuttle redox couple in the halide perovskite HI splitting system and enlightens one to integrate and utilize multi catalytic strategies for solar-driven water splitting.
RESUMO
Selective CO2 photoreduction to value-added multi-carbon (C2+) feedstocks, such as C2H4, holds great promise in direct solar-to-chemical conversion for a carbon-neutral future. Nevertheless, the performance is largely inhibited by the high energy barrier of C-C coupling process, thereby leading to C2+ products with low selectivity. Here we report that through facile surface immobilization of a 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) ionic liquid, plasmonic Cu nanowires could enable highly selective CO2 photoreduction to C2H4 product. At an optimal condition, the resultant plasmonic photocatalyst exhibits C2H4 production with selectivity up to 96.7 % under 450â nm monochromatic light irradiation, greatly surpassing its pristine Cu counterpart. Combined in situ spectroscopies and computational calculations unravel that the addition of EMIM-BF4 ionic liquid modulates the local electronic structure of Cu, resulting in its enhanced adsorption strength of *CO intermediate and significantly reduced energy barrier of C-C coupling process. This work paves new path for Cu surface plasmons in selective artificial photosynthesis to targeted products.
RESUMO
The multi-carbon (C2+) alcohols produced by electrochemical CO2 reduction, such as ethanol and n-propanol, are considered as indispensable liquid energy carriers. In most C-C coupling cases, however, the concomitant gaseous C2H4 product results in the low selectivity of C2+ alcohols. Here, we report rational construction of mesostructured CuO electrocatalysts, specifically mesoporous CuO (m-CuO) and cylindrical CuO (c-CuO), enables selective distribution of C2+ products. The m-CuO and c-CuO show similar selectivity towards total C2+ products (≥76 %), but the corresponding predominant products are C2+ alcohols (55 %) and C2H4 (52 %), respectively. The ordered mesostructure not only induces the surface hydrophobicity, but selectively tailors the adsorption configuration of *CO intermediate: m-CuO prefers bridged adsorption, whereas c-CuO favors top adsorption as revealed by in situ spectroscopies. Computational calculations unravel that bridged *CO adsorbate is prone to deep protonation into *OCH3 intermediate, thus accelerating the coupling of *CO and *OCH3 intermediates to generate C2+ alcohols; by contrast, top *CO adsorbate is apt to undergo conventional C-C coupling process to produce C2H4. This work illustrates selective C2+ products distribution via mesostructure manipulation, and paves a new path into the design of efficient electrocatalysts with tunable adsorption configuration of key intermediates for targeted products.
RESUMO
Recently, amorphous materials have gained great attention as an emerging kind of functional material, and their characteristics such as isotropy, absence of grain boundaries, and abundant defects are very likely to outrun the disadvantages of crystalline counterparts, such as low conductivity, and ultimately lead to improved charge transfer efficiency. Herein, we investigated the effect of amorphization on the charge transfer process and photocatalytic performance with a phosphonate-based metal-organic framework (FePPA) as the research object. Comprehensive experimental results suggest that compared to crystalline FePPA, amorphous FePPA has more distorted metal nodes, which affects the electron distribution and consequently improves the photogenerated charge separation efficiency. Meanwhile, the distorted metal nodes in amorphous FePPA also greatly promote the adsorption and activation of O2. Hence, amorphous FePPA exhibits a better performance of photocatalytic C(sp3)-H bond activation for selective oxidation of toluene to benzaldehyde. This work illustrates the advantages of amorphous MOFs in the charge transfer process, which is conducive to the further development of high performance MOFs-based photocatalysts.
RESUMO
Polar materials with spontaneous polarization (Ps) have emerged as highly promising photocatalysts for efficient photocatalytic H2 evolution owing to the Ps-enhanced photogenerated carrier separation. However, traditional inorganic polar materials often suffer from limitations such as wide band gaps and poor carrier transport, which hinders their photocatalytic H2 evolution efficiency. Here, we rationally synthesized a series of isostructural two-dimensional (2D) aromatic Dion-Jacobson (DJ) perovskites, namely (2-(2-Aminoethyl)pyridinium)PbI4 (2-APDPI), (3-(2-Aminoethyl)pyridinium)PbI4 (3-APDPI), and (4-(2-Aminoethyl)pyridinium)PbI4 (4-APDPI), where 2-APDPI and 4-APDPI crystalize in polar space groups with piezoelectric constants (d33) of approximately 40â pm V-1 and 3-APDPI adopts a centrosymmetric structure. Strikingly, owing to the Ps-facilitated separation of photogenerated carriers, polar 2-APDPI and 4-APDPI exhibit a 3.9- and 2.8-fold increase, respectively, in photocatalytic H2 evolution compared to the centrosymmetric 3-APDPI. As a pioneering study, this work provides an efficient approach for exploring new polar photocatalysts and highlights their potential in promoting photocatalytic H2 evolution.
RESUMO
The acidic electrochemical CO2 reduction reaction (CO2RR) for direct formic acid (HCOOH) production holds promise in meeting the carbon-neutral target, yet its performance is hindered by the competing hydrogen evolution reaction (HER). Understanding the adsorption strength of the key intermediates in acidic electrolyte is indispensable to favor CO2RR over HER. In this work, high-density Sn single atom catalysts (SACs) were prepared and used as catalyst, to reveal the pH-dependent adsorption strength and coverage of *CO2 - intermediatethat enables enhanced acidic CO2RR towards direct HCOOH production. At pH=3, Sn SACs could deliver a high Faradaic efficiency (90.8 %) of HCOOH formation and a corresponding partial current density up to -178.5â mA cm-2. The detailed in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic studies reveal that a favorable alkaline microenvironment for CO2RR to HCOOH is formed near the surface of Sn SACs, even in the acidic electrolyte. More importantly, the pH-dependent adsorption strength of *CO2 - intermediate is unravelled over the Sn SACs, which in turn affects the competition between HER and CO2RR in acidic electrolyte.
RESUMO
In this work, ethanol oxidation reaction (EOR) via 12-electron (C1-12e) pathway on spiky Au@AuPd nanoparticles (NPs) with ultrathin AuPd alloy shells is achieved in alkaline media with the assistance of the near-infrared (NIR) light. It is found that OH radicals can be produced from the OHads species adsorbed on the surfaces of Pd atoms led by surface plasmon resonance (SPR) effect of spiky Au@AuPd NPs under the irradiation of NIR light. Moreover, OH radicals play the key role for the achievement of EOR proceeded by the desirable C1-12e pathway because OH radicals can directly break the C-C bonds of ethanol. Accordingly, the electrocatalytic performance of spiky Au@AuPd NPs toward EOR under NIR light is greatly improved. For instance, their mass activity can be up to 33.2 A mgpd -1 in the 0.5 m KOH solution containing 0.5 m ethanol, which is about 158 times higher than that of commercial Pd/C catalysts (0.21 A mgpd -1 ) and is better than those of the state-of-the-art Pd-based catalysts reported in literature thus far, to the best of our knowledge. Moreover, their highest mass activity can be further improved to 118.3 A mgpd -1 in the 1.5 m KOH solution containing 1.25 m ethanol.
RESUMO
Photocatalytic hydrogen peroxide (H2 O2 ) production on BiVO4 photocatalysts using water and oxygen as raw materials is a green and sustainable process. However, the photocatalytic efficiency of pristine BiVO4 is limited by severe charge recombination. In this work, rare earth element Yttrium (Y) doped BiVO4 photocatalysts were fabricated by the hydrothermal method. In the photocatalytic H2 O2 production experiment, the optimized Y-doped BiVO4 photocatalyst produced 114â µmol g-1 h-1 of H2 O2 under simulated sunlight (AM1.5) irradiation, which is four times higher than production activity of pure BiVO4 (26â µmol g-1 h-1 ). Density functional theory (DFT) calculation revealed that Y doping can enhance oxygen adsorption on the BiVO4 photocatalyst surface. Mechanistic investigations suggest that the doping process induces the in situ formation of monoclinic/tetragonal BiVO4 heterojunction, which further promotes the photogenerated carriers separation efficiency.
RESUMO
Electrochemical water splitting is an environmentally friendly and effective energy storage method. However, it is still a huge challenge to prepare non-noble metal based electrocatalysts that possess high activity and long-term durability to realize efficient water splitting. Here, we present a novel method of low-temperature phosphating for preparing CoP/Co3 O4 heterojunction nanowires catalyst on titanium mesh (TM) substrate that can be used for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting. CoP/Co3 O4 @TM heterojunction showed an excellent catalytic performance and long-term durability in 1.0â M KOH electrolyte. The overpotential of CoP/Co3 O4 @TM heterojunction was only 257â mV at 20â mA cm-2 during the OER process, and it could work stably more than 40â h at 1.52â V versus reversible hydrogen electrode (vs. RHE). During the HER process, the overpotential of CoP/Co3 O4 @TM heterojunction was only 98â mV at -10â mA cm-2 . More importantly, when used as anodic and cathodic electrocatalyst, they achieved 10â mA cm-2 at 1.59â V. The Faradaic efficiencies of OER and HER were 98.4 % and 99.4 %, respectively, outperforming Ru/Ir-based noble metal electrocatalysts and other non-noble metal electrocatalysts for overall water splitting.
RESUMO
In this work, a new method to extend the light absorption and improve the photocatalytic activity of metal-organic frameworks (MOFs) with nitrogen-containing ligand is reported, namely, the protonation of nitrogen. Specifically, a protonated Bi-based MOF synthesized by a hydrothermal method (Bi-MMTAA-H, MMTAA=2-mercapto-4-methyl-5-thiazoleacetic acid) displays a wider visible light absorption than Bi-MMTAA-R with the same single-crystal structure, but synthesized by a reflux method. The redshifted light absorption was confirmed to be caused by the protonation of nitrogen in the thiazolyl ring in MMTAA. Moreover, this protonation also facilitates the charge separation and transfer and improves the photocatalytic activity of selective oxidation of α-terpinene to p-cymene. Our results provide a new idea for nitrogen-containing Bi-based MOFs to extend the light absorption and improve the photocatalytic performance.
RESUMO
Severe poisonousness and prolonged instability existing in organic-inorganic lead-based perovskite are two matters seriously hindering its potential future application in photocatalysis. Therefore, it is particularly important to explore ecology-friendly, air-stable and highly active metal-halide perovskites. Herein, a new and stable lead-free perovskite Cs2 SnBr6 decorated with reduced graphene oxide (rGO), is synthesized and employed in the photocatalytic organic conversion. The as-prepared Cs2 SnBr6 is ultrastable, exhibiting no clear changes after being placed in the air for six months. The Cs2 SnBr6 /rGO composite shows excellent photocatalytic activity in photo-driven-oxidation of 5-hydroxymethylfurfural (HMF) to high value enclosed 2,5-diformylfuran (DFF), achieving>99.5 % conversion of HMF and 88 % DFF selectivity in the presence of green oxidant O2 . Comprehensive characterizations disclose a multistep reaction mechanism, demonstrating that the molecular oxygen, photogenerated carriers, â O2 - and 1 O2 altogether synergistically participate in the effective photo-driven conversion of HMF to DFF. This work expands the material gallery towards selective organic conversion and environmentally friendly perovskite options for photocatalytic application.
RESUMO
Electrochemical CO2 reduction reaction (CO2 RR) to chemical fuels such as formate offers a promising pathway to carbon-neutral future, but its practical application is largely inhibited by the lack of effective activation of CO2 molecules and pH-universal feasibility. Here, we report an electronic structure manipulation strategy to electron-rich Bi nanosheets, where electrons transfer from Cu donor to Bi acceptor in bimetallic Cu-Bi, enabling CO2 RR towards formate with concurrent high activity, selectivity and stability in pH-universal (acidic, neutral and alkaline) electrolytes. Combined in situ Raman spectra and computational calculations unravel that electron-rich Bi promotes CO2 â - formation to activate CO2 molecules, and enhance the adsorption strength of *OCHO intermediate with an up-shifted p-band center, thus leading to its superior activity and selectivity of formate. Further integration of the robust electron-rich Bi nanosheets into III-V-based photovoltaic solar cell results in an unassisted artificial leaf with a high solar-to-formate (STF) efficiency of 13.7 %.
RESUMO
Photoconversion of CO2 and H2 O into ethanol is an ideal strategy to achieve carbon neutrality. However, the production of ethanol with high activity and selectivity is challenging owing to the less efficient reduction half-reaction involving multi-step proton-coupled electron transfer (PCET), a slow C-C coupling process, and sluggish water oxidation half-reaction. Herein, a two-dimensional/two-dimensional (2D/2D) S-scheme heterojunction consisting of black phosphorus and Bi2 WO6 (BP/BWO) was constructed for photocatalytic CO2 reduction coupling with benzylamine (BA) oxidation. The as-prepared BP/BWO catalyst exhibits a superior photocatalytic performance toward CO2 reduction, with a yield of 61.3â µmol g-1 h-1 for ethanol (selectivity of 91 %).In situ spectroscopic studies and theoretical calculations reveal that S-scheme heterojunction can effectively promote photogenerated carrier separation via the Bi-O-P bridge to accelerate the PCET process. Meanwhile, electron-rich BP acts as the active site and plays a vital role in the process of C-C coupling. In addition, the substitution of BA oxidation for H2 O oxidation can further enhance the photocatalytic performance of CO2 reduction to C2 H5 OH. This work opens a new horizon for exploring novel heterogeneous photocatalysts in CO2 photoconversion to C2 H5 OH based on cooperative photoredox systems.
RESUMO
The electrochemical CO2 reduction reaction (CO2 RR) has great potential in realizing carbon recycling while storing sustainable electricity as hydrocarbon fuels. However, it is still a challenge to enhance the selectivity of the CO2 RR to single multi-carbon (C2+ ) product, such as C2 H4 . Here, an effective method is proposed to improve C2 H4 selectivity by inhibiting the production of the other competitive C2 products, namely C2 H5 OH, from Cu2 O/C composite. Density functional theory indicates that the heterogeneous structure between Cu2 O and carbon is expected to inhibit C2 H5 OH production and promote CC coupling, which facilitates C2 H4 production. To prove this, a composite electrode containing octahedral Cu2 O nanoparticles (NPs) (o-Cu2 O) with {111} facets and carbon NPs is constructed, which experimentally inhibits C2 H5 OH production while strongly enhancing C2 H4 selectivity compared with o-Cu2 O electrode. Furthermore, the surface hydroxylation of carbon can further improve the C2 H4 production of o-Cu2 O/C electrode, exhibiting a high C2 H4 Faradaic efficiency of 67% and a high C2 H4 current density of 45 mA cm-2 at -1.1 V in a near-neutral electrolyte. This work provides a new idea to improve C2+ selectivity by controlling products desorption.
RESUMO
Direct ammonia (NH3 ) synthesis from water and atmospheric nitrogen using sunlight provides an energy-sustainable and carbon-neutral alternative to the Haber-Bosch process. However, the development of such a route with high performance is impeded by the lack of effective charge transfer and abundant active sites to initiate the nitrogen reduction reaction (NRR). Here, the authors report efficient plasmon-induced photoelectrochemical (PEC) NH3 synthesis on the hierarchical free-standing Au/Kx MoO3 /Mo/Kx MoO3 /Au nanoarrays. Endowed with energetically hot electrons and catalytically active sites, the plasmonic nanoarrays exhibit an efficient PEC NH3 synthesis rate of 9.6 µg cm-2 h-1 under visible light irradiation, which is among the highest PEC NRR systems. This work demonstrates the rationally designed plasmonic nanoarrays for highly efficient NH3 synthesis, which paves a new path for PEC catalytic reactions driven by surface plasmons and future monolithic PEC devices for direct artificial photosynthesis.
Assuntos
Amônia , Elétrons , Catálise , Domínio Catalítico , NitrogênioRESUMO
Lead halide perovskite has triggered a lot of research due to its superior optical properties. However, halide perovskite materials have poor environmental stabilities and are easily affected by external factors such as water and heat, resulting in structural decomposition and performance failure. Contrary to this commonplace concept, it is found that CsPbBr3 (CPB) can convert to CsPb2 Br5 (CP2B5) partially when meeting a small amount of water, and the CsPbBr3 @CsPb2 Br5 (CPB@CP2B5) composite is synthesized by an inâ situ method accordingly. The CPB@CP2B5 composite shows an enhanced catalytic performance compared with pure CPB, as well as a dramatically synergistic effect of photo and thermal for catalytic CO2 hydrogenation. The CO production rate of CPB@CP2B5 is determined as 69â µmol g-1 h-1 under light irradiation at 200 °C, which is 156.8 and 43.4 times higher than that under pure photo (0.44â µmol g-1 h -1 ) and pure thermal (1.59â µmol g-1 h -1 ) condition, respectively. Meanwhile, the CPB@CP2B5 sample is also stable, which shows no significant decline in the catalytic activity during 8 cycles of repeated experiments. The probable mechanism is explored by utilizing a series of inâ situ characterizations.