RESUMO
Bone pain is a presenting feature of bone cancers such as osteosarcoma (OS), relayed by skeletal-innervating peripheral afferent neurons. Potential functions of tumor-associated sensory neurons in bone cancers beyond pain sensation are unknown. To uncover neural regulatory functions, a chemical-genetic approach in mice with a knock-in allele for TrkA was used to functionally perturb sensory nerve innervation during OS growth and disease progression. TrkA inhibition in transgenic mice led to significant reductions in sarcoma-associated sensory innervation and vascularization, tumor growth and metastasis, and prolonged overall survival. Single-cell transcriptomics revealed that sarcoma denervation was associated with phenotypic alterations in both OS tumor cells and cells within the tumor microenvironment, and with reduced calcitonin gene-related peptide (CGRP) and vascular endothelial growth factor (VEGF) signaling. Multimodal and multi-omics analyses of human OS bone samples and human dorsal root ganglia neurons further implicated peripheral innervation and neurotrophin signaling in OS tumor biology. In order to curb tumor-associated axonal ingrowth, we next leveraged FDA-approved bupivacaine liposomes leading to significant reductions in sarcoma growth, vascularity, as well as alleviation of pain. In sum, TrkA-expressing peripheral neurons positively regulate key aspects of OS progression and sensory neural inhibition appears to disrupt calcitonin receptor signaling (CALCR) and VEGF signaling within the sarcoma microenvironment leading to significantly reduced tumor growth and improved survival. These data suggest that interventions to prevent pathological innervation of osteosarcoma represent a novel adjunctive therapy to improve clinical outcomes and survival.
RESUMO
Improved treatment strategies for sarcoma rely on clarification of the molecular mediators of disease progression. Recently, we reported that the secreted glycoprotein NELL-1 modulates osteosarcoma (OS) disease progression in part via altering the sarcomatous extracellular matrix (ECM) and cell-ECM interactions. Of known NELL-1 interactor proteins, Contactin-associated protein-like 4 (Cntnap4) encodes a member of the neurexin superfamily of transmembrane molecules best known for its presynaptic functions in the central nervous system. Here, CRISPR/Cas9 gene deletion of CNTNAP4 reduced OS tumor growth, sarcoma-associated angiogenesis, and pulmonary metastases. CNTNAP4 knockout (KO) in OS tumor cells largely phenocopied the effects of NELL-1 KO, including reductions in sarcoma cell attachment, migration, and invasion. Further, CNTNAP4 KO cells were found to be unresponsive to the effects of NELL-1 treatment. Transcriptomic analysis combined with protein phospho-array demonstrated notable reductions in the MAPK/ERK signaling cascade with CNTNAP4 deletion, and the ERK1/2 agonist isoproterenol restored cell functions among CNTNAP4 KO tumor cells. Finally, human primary cells and tissues in combination with sequencing datasets confirmed the significance of CNTNAP4 signaling in human sarcomas. In summary, our findings demonstrate the biological importance of NELL-1/CNTNAP4 signaling axis in disease progression of human sarcomas and suggest that targeting the NELL-1/CNTNAP4 signaling pathway represents a strategy with potential therapeutic benefit in sarcoma patients.