Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(12): 1970-1982.e6, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327775

RESUMO

Pioneer transcription factors are essential for cell fate changes by targeting closed chromatin. OCT4 is a crucial pioneer factor that can induce cell reprogramming. However, the structural basis of how pioneer factors recognize the in vivo nucleosomal DNA targets is unknown. Here, we determine the high-resolution structures of the nucleosome containing human LIN28B DNA and its complexes with the OCT4 DNA binding region. Three OCT4s bind the pre-positioned nucleosome by recognizing non-canonical DNA sequences. Two use their POUS domains while the other uses the POUS-loop-POUHD region; POUHD serves as a wedge to unwrap ∼25 base pair DNA. Our analysis of previous genomic data and determination of the ESRRB-nucleosome-OCT4 structure confirmed the generality of these structural features. Moreover, biochemical studies suggest that multiple OCT4s cooperatively open the H1-condensed nucleosome array containing the LIN28B nucleosome. Thus, our study suggests a mechanism of how OCT4 can target the nucleosome and open closed chromatin.


Assuntos
Cromatina , Nucleossomos , Fator 3 de Transcrição de Octâmero , Proteínas de Ligação a RNA , Humanos , Sequência de Bases , Reprogramação Celular , Cromatina/genética , DNA/metabolismo , Nucleossomos/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo
2.
Nat Rev Mol Cell Biol ; 19(3): 192-206, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29018282

RESUMO

Together with core histones, which make up the nucleosome, the linker histone (H1) is one of the five main histone protein families present in chromatin in eukaryotic cells. H1 binds to the nucleosome to form the next structural unit of metazoan chromatin, the chromatosome, which may help chromatin to fold into higher-order structures. Despite their important roles in regulating the structure and function of chromatin, linker histones have not been studied as extensively as core histones. Nevertheless, substantial progress has been made recently. The first near-atomic resolution crystal structure of a chromatosome core particle and an 11 Å resolution cryo-electron microscopy-derived structure of the 30 nm nucleosome array have been determined, revealing unprecedented details about how linker histones interact with the nucleosome and organize higher-order chromatin structures. Moreover, several new functions of linker histones have been discovered, including their roles in epigenetic regulation and the regulation of DNA replication, DNA repair and genome stability. Studies of the molecular mechanisms of H1 action in these processes suggest a new paradigm for linker histone function beyond its architectural roles in chromatin.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Sequência de Aminoácidos , Animais , Cromatina/química , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA/química , DNA/genética , DNA/metabolismo , Reparo do DNA , Replicação do DNA , Epigênese Genética , Variação Genética , Instabilidade Genômica , Histonas/química , Histonas/genética , Humanos , Modelos Biológicos , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Conformação Proteica , Homologia de Sequência de Aminoácidos
3.
Mol Cell ; 81(1): 166-182.e6, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33238161

RESUMO

The repeating structural unit of metazoan chromatin is the chromatosome, a nucleosome bound to a linker histone, H1. There are 11 human H1 isoforms with diverse cellular functions, but how they interact with the nucleosome remains elusive. Here, we determined the cryoelectron microscopy (cryo-EM) structures of chromatosomes containing 197 bp DNA and three different human H1 isoforms, respectively. The globular domains of all three H1 isoforms bound to the nucleosome dyad. However, the flanking/linker DNAs displayed substantial distinct dynamic conformations. Nuclear magnetic resonance (NMR) and H1 tail-swapping cryo-EM experiments revealed that the C-terminal tails of the H1 isoforms mainly controlled the flanking DNA orientations. We also observed partial ordering of the core histone H2A C-terminal and H3 N-terminal tails in the chromatosomes. Our results provide insights into the structures and dynamics of the chromatosomes and have implications for the structure and function of chromatin.


Assuntos
DNA/química , Histonas/química , Nucleossomos/química , Microscopia Crioeletrônica , DNA/ultraestrutura , Humanos , Nucleossomos/ultraestrutura , Isoformas de Proteínas/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-38818583

RESUMO

Alcoholic liver disease (ALD) poses a significant health challenge, so comprehensive research efforts to improve our understanding and treatment strategies are needed. However, the development of effective treatments is hindered by the limitation of existing liver disease models. Liver organoids, characterized by their cellular complexity and three-dimensional (3D) tissue structure closely resembling the human liver, hold promise as ideal models for liver disease research. In this study, we use a meticulously designed protocol involving the differentiation of human induced pluripotent stem cells (hiPSCs) into liver organoids. This process incorporates a precise combination of cytokines and small molecule compounds within a 3D culture system to guide the differentiation process. Subsequently, these differentiated liver organoids are subject to ethanol treatment to induce ALD, thus establishing a disease model. A rigorous assessment through a series of experiments reveals that this model partially recapitulates key pathological features observed in clinical ALD, including cellular mitochondrial damage, elevated cellular reactive oxygen species (ROS) levels, fatty liver, and hepatocyte necrosis. In addition, this model offers potential use in screening drugs for ALD treatment. Overall, the liver organoid model of ALD, which is derived from hiPSC differentiation, has emerged as an invaluable platform for advancing our understanding and management of ALD in clinical settings.

5.
Mol Cell ; 59(4): 628-38, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26212454

RESUMO

Linker histones bind to the nucleosome and regulate the structure of chromatin and gene expression. Despite more than three decades of effort, the structural basis of nucleosome recognition by linker histones remains elusive. Here, we report the crystal structure of the globular domain of chicken linker histone H5 in complex with the nucleosome at 3.5 Å resolution, which is validated using nuclear magnetic resonance spectroscopy. The globular domain sits on the dyad of the nucleosome and interacts with both DNA linkers. Our structure integrates results from mutation analyses and previous cross-linking and fluorescence recovery after photobleach experiments, and it helps resolve the long debate on structural mechanisms of nucleosome recognition by linker histones. The on-dyad binding mode of the H5 globular domain is different from the recently reported off-dyad binding mode of Drosophila linker histone H1. We demonstrate that linker histones with different binding modes could fold chromatin to form distinct higher-order structures.


Assuntos
Proteínas de Drosophila/química , Histonas/química , Nucleossomos/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Drosophila melanogaster , Modelos Moleculares , Dados de Sequência Molecular , Nucleossomos/fisiologia , Ligação Proteica
6.
Biochemistry ; 57(48): 6645-6648, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30430826

RESUMO

It was recently reported that human linker histone H1.0 and its chaperone prothymosin-α (ProTα) form an extremely disordered 1:1 complex with an ultrahigh affinity (equilibrium dissociation constant KD of ∼2 × 10-12 M) measured using a single-molecule Förster resonance energy transfer method. It was hypothesized that the ultrahigh affinity and extreme disorder may be required for the chaperone function of ProTα, in which it displaces the linker histone from condensed chromatin. Here, we measure the binding affinity for the ProTα-H1.0 complex using isothermal titration calorimetry and report a KD value of (4.6 ± 0.5) × 10-7 M. In addition, we show that ProTα facilitates the formation of the H1.0-nucleosome complex in vitro. The results of our study contrast with those of the previous report and provide new insights into the chaperone function of ProTα. Possible causes for the observed discrepancy in binding affinity are discussed.


Assuntos
Histonas/metabolismo , Precursores de Proteínas/metabolismo , Timosina/análogos & derivados , Sequência de Aminoácidos , Calorimetria , Transferência Ressonante de Energia de Fluorescência , Histonas/química , Histonas/genética , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Ligação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/genética , Timosina/química , Timosina/genética , Timosina/metabolismo
7.
BMC Med Genet ; 19(1): 192, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30376821

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder in which genetics plays a key aetiological role. The gene encoding NAD(P)H steroid dehydrogenase-like protein (NSDHL) is expressed in developing cortical neurons and glia, and its mutation may result in intellectual disability or congenital hemidysplasia. CASE PRESENTATION: An 8-year-old boy presented with a 260-kb NSDHL-containing duplication at Xq28 (151,868,909 - 152,129,300) inherited from his mother. His clinical features included defects in social communication and interaction, restricted interests, attention deficit, impulsive behaviour, minor facial anomalies and serum free fatty acid abnormality. CONCLUSION: This is the first report of an ASD patient with a related NSDHL-containing duplication at Xq28. Further studies and case reports are required for genetic research to demonstrate that duplication as well as mutation can cause neurodevelopmental diseases.


Assuntos
3-Hidroxiesteroide Desidrogenases/genética , Transtorno do Espectro Autista/genética , Duplicação Cromossômica , Cromossomos Humanos Par 10/química , Herança Materna , Adulto , Transtorno do Espectro Autista/sangue , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/fisiopatologia , Criança , Ácidos Graxos não Esterificados/sangue , Feminino , Dosagem de Genes , Expressão Gênica , Humanos , Masculino
8.
Nature ; 472(7342): 234-7, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21412236

RESUMO

The centromere is a unique chromosomal locus that ensures accurate segregation of chromosomes during cell division by directing the assembly of a multiprotein complex, the kinetochore. The centromere is marked by a conserved variant of conventional histone H3 termed CenH3 or CENP-A (ref. 2). A conserved motif of CenH3, the CATD, defined by loop 1 and helix 2 of the histone fold, is necessary and sufficient for specifying centromere functions of CenH3 (refs 3, 4). The structural basis of this specification is of particular interest. Yeast Scm3 and human HJURP are conserved non-histone proteins that interact physically with the (CenH3-H4)(2) heterotetramer and are required for the deposition of CenH3 at centromeres in vivo. Here we have elucidated the structural basis for recognition of budding yeast (Saccharomyces cerevisiae) CenH3 (called Cse4) by Scm3. We solved the structure of the Cse4-binding domain (CBD) of Scm3 in complex with Cse4 and H4 in a single chain model. An α-helix and an irregular loop at the conserved amino terminus and a shorter α-helix at the carboxy terminus of Scm3(CBD) wraps around the Cse4-H4 dimer. Four Cse4-specific residues in the N-terminal region of helix 2 are sufficient for specific recognition by conserved and functionally important residues in the N-terminal helix of Scm3 through formation of a hydrophobic cluster. Scm3(CBD) induces major conformational changes and sterically occludes DNA-binding sites in the structure of Cse4 and H4. These findings have implications for the assembly and architecture of the centromeric nucleosome.


Assuntos
Centrômero/química , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Motivos de Aminoácidos , Sequência de Aminoácidos , Autoantígenos/química , Autoantígenos/metabolismo , Sítios de Ligação , Centrômero/metabolismo , Proteína Centromérica A , Sequência Conservada , DNA/química , DNA/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Nucleossomos/química , Nucleossomos/metabolismo , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
9.
Proc Natl Acad Sci U S A ; 110(48): 19390-5, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218562

RESUMO

Linker H1 histones facilitate formation of higher-order chromatin structures and play important roles in various cell functions. Despite several decades of effort, the structural basis of how H1 interacts with the nucleosome remains elusive. Here, we investigated Drosophila H1 in complex with the nucleosome, using solution nuclear magnetic resonance spectroscopy and other biophysical methods. We found that the globular domain of H1 bridges the nucleosome core and one 10-base pair linker DNA asymmetrically, with its α3 helix facing the nucleosomal DNA near the dyad axis. Two short regions in the C-terminal tail of H1 and the C-terminal tail of one of the two H2A histones are also involved in the formation of the H1-nucleosome complex. Our results lead to a residue-specific structural model for the globular domain of the Drosophila H1 in complex with the nucleosome, which is different from all previous experiment-based models and has implications for chromatin dynamics in vivo.


Assuntos
Histonas/química , Substâncias Macromoleculares/química , Modelos Moleculares , Conformação Molecular , Nucleossomos/química , Sequência de Aminoácidos , Calorimetria , Histonas/genética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica
10.
Arch Toxicol ; 88(3): 781-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24241477

RESUMO

Titanium dioxide nanoparticles (nano-TiO2) are frequently used in cosmetics, paints, sunscreens and the like. Recent studies have demonstrated that nano-TiO2 might be deleterious for the male reproductive function. However, the effects of pubertal nano-TiO2 exposure on testosterone (T) synthesis and spermatogenesis remained to be elucidated. Here, we investigated the effect of pubertal nano-TiO2 exposure on the synthesis of T and spermatogenesis. Nano-TiO2 was orally administered daily to Kunming male mice from 28th postnatal day (PND 28) to PND 70. The percentage of spermatozoa abnormality in epididymides was markedly increased in mice exposed to nano-TiO2; decreased layers of spermatogenic cells and vacuoles in seminiferous tubules were also observed in the nano-TiO2 treated group. In addition, pubertal nano-TiO2 exposure significantly decreased the serum T levels in male mice. Moreover, mice exposures to nano-TiO2 significantly reduced the expression of 17ß-hydroxysteroid dehydrogenase and P450 17α-hydroxysteroid dehydrogenase in the testis of mice, while the expression of cytochrome P450-19, a key enzyme for the translation of T to estradiol (E2), was increased. Taken together, these results indicated that nano-TiO2 could influence the levels of serum T through changes in both the synthesis and translation of T. Furthermore, the decreased serum T synthesis might contribute to the reduced spermatogenesis in mice exposed to nano-TiO2.


Assuntos
Nanopartículas/toxicidade , Espermatogênese/efeitos dos fármacos , Testosterona/biossíntese , Titânio/toxicidade , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Epididimo/efeitos dos fármacos , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , Masculino , Camundongos , Nanopartículas/administração & dosagem , Tamanho do Órgão/efeitos dos fármacos , Fosfoproteínas/genética , Puberdade , Contagem de Espermatozoides , Espermatozoides/efeitos dos fármacos , Espermatozoides/patologia , Testículo/efeitos dos fármacos , Testículo/patologia , Testosterona/sangue , Titânio/administração & dosagem
11.
Proc Natl Acad Sci U S A ; 108(30): 12283-8, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21730181

RESUMO

Chromatin structure and function are regulated by numerous proteins through specific binding to nucleosomes. The structural basis of many of these interactions is unknown, as in the case of the high mobility group nucleosomal (HMGN) protein family that regulates various chromatin functions, including transcription. Here, we report the architecture of the HMGN2-nucleosome complex determined by a combination of methyl-transverse relaxation optimized nuclear magnetic resonance spectroscopy (methyl-TROSY) and mutational analysis. We found that HMGN2 binds to both the acidic patch in the H2A-H2B dimer and to nucleosomal DNA near the entry/exit point, "stapling" the histone core and the DNA. These results provide insight into how HMGNs regulate chromatin structure through interfering with the binding of linker histone H1 to the nucleosome as well as a structural basis of how phosphorylation induces dissociation of HMGNs from chromatin during mitosis. Importantly, our approach is generally applicable to the study of nucleosome-binding interactions in chromatin.


Assuntos
Proteína HMGN2/química , Nucleossomos/química , Sequência de Aminoácidos , Sítios de Ligação , DNA/química , DNA/metabolismo , Proteína HMGN2/genética , Proteína HMGN2/metabolismo , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Técnicas In Vitro , Cinética , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Nucleossomos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
12.
Nat Struct Mol Biol ; 31(4): 633-643, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38267599

RESUMO

Pioneer transcription factors are vital for cell fate changes. PU.1 and C/EBPα work together to regulate hematopoietic stem cell differentiation. However, how they recognize in vivo nucleosomal DNA targets remains elusive. Here we report the structures of the nucleosome containing the mouse genomic CX3CR1 enhancer DNA and its complexes with PU.1 alone and with both PU.1 and the C/EBPα DNA binding domain. Our structures reveal that PU.1 binds the DNA motif at the exit linker, shifting 17 bp of DNA into the core region through interactions with H2A, unwrapping ~20 bp of nucleosomal DNA. C/EBPα binding, aided by PU.1's repositioning, unwraps ~25 bp of entry DNA. The PU.1 Q218H mutation, linked to acute myeloid leukemia, disrupts PU.1-H2A interactions. PU.1 and C/EBPα jointly displace linker histone H1 and open the H1-condensed nucleosome array. Our study unveils how two pioneer factors can work cooperatively to open closed chromatin by altering DNA positioning in the nucleosome.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT , Nucleossomos , Camundongos , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , DNA/química
13.
IEEE J Biomed Health Inform ; 28(6): 3683-3694, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38625762

RESUMO

Interpersonal communication facilitates symptom measures of autistic sociability to enhance clinical decision-making in identifying children with autism spectrum disorder (ASD). Traditional methods are carried out by clinical practitioners with assessment scales, which are subjective to quantify. Recent studies employ engineering technologies to analyze children's behaviors with quantitative indicators, but these methods only generate specific rule-driven indicators that are not adaptable to diverse interaction scenarios. To tackle this issue, we propose a Computational Interpersonal Communication Model (CICM) based on psychological theory to represent dyadic interpersonal communication as a stochastic process, providing a scenario-independent theoretical framework for evaluating autistic sociability. We apply CICM to the response-to-name (RTN) with 48 subjects, including 30 toddlers with ASD and 18 typically developing (TD), and design a joint state transition matrix as quantitative indicators. Paired with machine learning, our proposed CICM-driven indicators achieve consistencies of 98.44% and 83.33% with RTN expert ratings and ASD diagnosis, respectively. Beyond outstanding screening results, we also reveal the interpretability between CICM-driven indicators and expert ratings based on statistical analysis.


Assuntos
Transtorno do Espectro Autista , Comunicação , Humanos , Pré-Escolar , Masculino , Feminino , Lactente , Aprendizado de Máquina , Diagnóstico por Computador/métodos , Relações Interpessoais
14.
Adv Healthc Mater ; 13(10): e2304207, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175149

RESUMO

Myocardial infarction (MI) results in cardiomyocyte necrosis and conductive system damage, leading to sudden cardiac death and heart failure. Studies have shown that conductive biomaterials can restore cardiac conduction, but cannot facilitate tissue regeneration. This study aims to add regenerative capabilities to the conductive biomaterial by incorporating human endometrial mesenchymal stem cell (hEMSC)-derived exosomes (hEMSC-Exo) into poly-pyrrole-chitosan (PPY-CHI), to yield an injectable hydrogel that can effectively treat MI. In vitro, PPY-CHI/hEMSC-Exo, compared to untreated controls, PPY-CHI, or hEMSC-Exo alone, alleviates H2O2-induced apoptosis and promotes tubule formation, while in vivo, PPY-CHI/hEMSC-Exo improves post-MI cardiac functioning, along with counteracting against ventricular remodeling and fibrosis. All these activities are facilitated via increased epidermal growth factor (EGF)/phosphoinositide 3-kinase (PI3K)/AKT signaling. Furthermore, the conductive properties of PPY-CHI/hEMSC-Exo are able to resynchronize cardiac electrical transmission to alleviate arrythmia. Overall, PPY-CHI/hEMSC-Exo synergistically combines the cardiac regenerative capabilities of hEMSC-Exo with the conductive properties of PPY-CHI to improve cardiac functioning, via promoting angiogenesis and inhibiting apoptosis, as well as resynchronizing electrical conduction, to ultimately enable more effective MI treatment. Therefore, incorporating exosomes into a conductive hydrogel provides dual benefits in terms of maintaining conductivity, along with facilitating long-term exosome release and sustained application of their beneficial effects.


Assuntos
Quitosana , Exossomos , Células-Tronco Mesenquimais , Infarto do Miocárdio , Humanos , Polímeros/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Pirróis , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Preparações de Ação Retardada/farmacologia , Peróxido de Hidrogênio/metabolismo , Infarto do Miocárdio/terapia , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Miócitos Cardíacos/metabolismo
15.
Food Chem Toxicol ; 186: 114538, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387523

RESUMO

Arsenic exposure is a significant risk factor for folate-resistant neural tube defects (NTDs), but the potential mechanism is unclear. In this study, a mouse model of arsenic-induced NTDs was established to investigate how arsenic affects early neurogenesis leading to malformations. The results showed that in utero exposure to arsenic caused a decline in the normal embryos, an elevated embryo resorption, and a higher incidence of malformed embryos. Cranial and spinal deformities were the main malformation phenotypes observed. Meanwhile, arsenic-induced NTDs were accompanied by an oxidant/antioxidant imbalance manifested by elevated levels of reactive oxygen species (ROS) and decreased antioxidant activities. In addition, changes in the expression of autophagy-related genes and proteins (ULK1, Atg5, LC3B, p62) as well as an increase in autophagosomes were observed in arsenic-induced aberrant brain vesicles. Also, the components of the upstream pathway regulating autophagy (AMPK, PKB, mTOR, Raptor) were altered accordingly after arsenic exposure. Collectively, our findings propose a mechanism for arsenic-induced NTDs involving AMPK/PKB-mTORC1-mediated autophagy. Blocking autophagic cell death due to excessive autophagy provides a novel strategy for the prevention of folate-resistant NTDs, especially for arsenic-exposed populations.


Assuntos
Arsênio , Defeitos do Tubo Neural , Camundongos , Animais , Arsênio/toxicidade , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Antioxidantes , Tubo Neural/metabolismo , Autofagia/fisiologia , Ácido Fólico/efeitos adversos , Defeitos do Tubo Neural/induzido quimicamente
16.
Cell Stem Cell ; 31(1): 52-70.e8, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181751

RESUMO

Human pluripotent stem cell-derived kidney organoids offer unprecedented opportunities for studying polycystic kidney disease (PKD), which still has no effective cure. Here, we developed both in vitro and in vivo organoid models of PKD that manifested tubular injury and aberrant upregulation of renin-angiotensin aldosterone system. Single-cell analysis revealed that a myriad of metabolic changes occurred during cystogenesis, including defective autophagy. Experimental activation of autophagy via ATG5 overexpression or primary cilia ablation significantly inhibited cystogenesis in PKD kidney organoids. Employing the organoid xenograft model of PKD, which spontaneously developed tubular cysts, we demonstrate that minoxidil, a potent autophagy activator and an FDA-approved drug, effectively attenuated cyst formation in vivo. This in vivo organoid model of PKD will enhance our capability to discover novel disease mechanisms and validate candidate drugs for clinical translation.


Assuntos
Cílios , Doenças Renais Policísticas , Humanos , Rim , Doenças Renais Policísticas/tratamento farmacológico , Autofagia , Organoides
17.
Chin Med J (Engl) ; 136(15): 1783-1793, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37365679

RESUMO

ABSTRACT: Organoids are three-dimensional cellular structures with self-organizing and self-differentiation capacities. They faithfully recapitulate structures and functions of in vivo organs as represented by functionality and microstructural definitions. Heterogeneity in in vitro disease modeling is one of the main reasons for anti-cancer therapy failures. Establishing a powerful model to represent tumor heterogeneity is crucial for elucidating tumor biology and developing effective therapeutic strategies. Tumor organoids can retain the original tumor heterogeneity and are commonly used to mimic the cancer microenvironment when co-cultured with fibroblasts and immune cells; therefore, considerable effort has been made recently to promote the use of this new technology from basic research to clinical studies in tumors. In combination with gene editing technology and microfluidic chip systems, engineered tumor organoids show promising abilities to recapitulate tumorigenesis and metastasis. In many studies, the responses of tumor organoids to various drugs have shown a positive correlation with patient responses. Owing to these consistent responses and personalized characteristics with patient data, tumor organoids show excellent potential for preclinical research. Here, we summarize the properties of different tumor models and review their current state and progress in tumor organoids. We further discuss the substantial challenges and prospects in the rapidly developing tumor organoid field.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Organoides/patologia , Carcinogênese , Modelos Biológicos , Medicina de Precisão/métodos , Microambiente Tumoral
18.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37790476

RESUMO

Pioneer transcription factors are vital for cell fate changes. PU.1 and C/EBPα work together to regulate hematopoietic stem cell differentiation. However, how they recognize in vivo nucleosomal DNA targets remain elusive. Here we report the structures of the nucleosome containing the mouse genomic CX3CR1 enhancer DNA and its complexes with PU.1 alone and with both PU.1 and the C/EBPα DNA binding domain. Our structures reveal that PU.1 binds the DNA motif at the exit linker, shifting 17 bp of DNA into the core region through interactions with H2A, unwrapping ~20 bp of nucleosomal DNA. C/EBPα binding, aided by PU.1's repositioning, unwraps ~25 bp entry DNA. The PU.1 Q218H mutation, linked to acute myeloid leukemia, disrupts PU.1-H2A interactions. PU.1 and C/EBPα jointly displace linker histone H1 and open the H1-condensed nucleosome array. Our study unveils how two pioneer factors can work cooperatively to open closed chromatin by altering DNA positioning in the nucleosome.

19.
bioRxiv ; 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36789416

RESUMO

Pioneer transcription factors are essential for cell fate changes by targeting closed chromatin. OCT4 is a crucial pioneer factor that can induce cell reprogramming. However, the structural basis of how pioneer factors recognize the in vivo nucleosomal DNA targets is unknown. Here, we determine the high-resolution structures of the nucleosome containing human LIN28B DNA and its complexes with the OCT4 DNA binding region. Three OCT4s bind the pre-positioned nucleosome by recognizing non-canonical DNA motifs. Two use their POUS domains by forming extensive hydrogen bonds. The other uses the POUS-loop-POUHD region; POUHD serves as a wedge to unwrap ∻25 base pair DNA. Biochemical studies suggest that multiple OCT4s cooperatively open the H1-condensed nucleosome array containing the LIN28B nucleosome. Our study suggests a mechanism whereby OCT4s target the LIN28B nucleosome by forming multivalent interactions with nucleosomal motifs, unwrapping nucleosomal DNA, evicting H1, and cooperatively open closed chromatin to initiate cell reprogramming.

20.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37986743

RESUMO

Pioneer transcription factors possess the unique ability to access DNA within tightly packed chromatin structures, playing pivotal roles in cell differentiation and reprogramming. However, their precise mechanism for recognizing nucleosomes has remained mystery. Recent structural and biochemical investigations into the binding interactions between the human pioneer factor OCT4 and the LIN28B nucleosome by Sinha et al.1 and Guan et al.2 have yielded conflicting results regarding nucleosome positioning, nucleosomal DNA unwrapping, binding cooperativity, and the role of N-terminal tail of OCT4. In this study, we undertook a comparative analysis of these two research efforts and delved into the factors contributing to the observed discrepancies. Our investigation unveiled that the utilization of human and Xenopus laevis core histones, along with a discrete two-step salt dialysis method, led to distinct positioning of DNA within reconstituted LIN28B nucleosomes. Additionally, our reanalysis of the electrophoretic mobility shift assay data showed that H3 K27 acetylation did not increase OCT4 binding to the internal sites of the nucleosome when normalized to input; instead, it promoted sample aggregation. Thus, the available experimental data support the notion that the human LIN28B nucleosome is pre-positioned for efficient binding with multiple OCT4s, and there is no compelling evidence for its regulation by histone modifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA