Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(7): 1647-1655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38305859

RESUMO

Target-based drug discovery technology based on cell membrane targets has gained significant traction and has been steadily advancing. However, current methods still face certain limitations that need to be addressed. One of the challenges is the laborious preparation process of screening materials, which can be time-consuming and resource-intensive. Additionally, there is a potential issue of non-specific adsorption caused by carrier materials, which can result in false-positive results and compromise the accuracy of the screening process. To address these challenges, this paper proposes a target-based cell membrane affinity ultrafiltration technology for active ingredient discovery in natural products. In this technique, the cell membranes of human lung adenocarcinoma epithelial cells (A549) with a high expression of epidermal growth factor receptor (EGFR) were incubated with candidate drugs and then transferred to an ultrafiltration tube. Through centrifugation, components that interacted with EGFR were retained in the ultrafiltration tube as "EGFR-ligand" complex, while the components that did not interact with EGFR were separated. After thorough washing and eluting, the components interacting with EGFR were dissociated and further identified using LC-MS, enabling the discovery of bioactive compounds. Moreover, the target-based cell membrane affinity ultrafiltration technology exhibited commendable binding capacity and selectivity. Ultimately, this technology successfully screened and identified two major components from the Curcumae Rhizoma-Sparganii Rhizoma (CS) herb pair extracts, which were further validated for their potential anti-tumor activity through pharmacological experiments. By eliminating the need for laborious preparation of screening materials and the potential non-specific adsorption caused by carriers, the development of target-based cell membrane affinity ultrafiltration technology provides a simplified approach and method for bioactive compounds discovery in natural sources.


Assuntos
Produtos Biológicos , Ultrafiltração , Humanos , Ultrafiltração/métodos , Produtos Biológicos/farmacologia , Tecnologia , Receptores ErbB , Membrana Celular
2.
Zhongguo Zhong Yao Za Zhi ; 46(10): 2617-2622, 2021 May.
Artigo em Zh | MEDLINE | ID: mdl-34047111

RESUMO

The origins of 9 species of the Chinese medicinal materials in the 2015 edition of the Chinese pharmacopoeia(ChP) has revised in the 2020 edition of ChP. The revision is based on the investigation and textual research on the problems found after screening the original plants, animals or minerals of all the Chinese medicinal materials in the 2015 edition. Among them the Chinese names of Alismatis Rhizoma, Cassiae Semen, Coicis Semen, Corydalis Bungeanae Herba and Echinopsis Radix all do not match to the Latin scientific names, and also do not match the name of the actual medicinal origins. In addition, Alismatis Rhizoma has the omission of original plant. There is confusion about the Chinese name and the family name of the original insect of Cera Chinensis. The original mineral of Gypsum Fibrosum has the wrong group names. Alumstone and melanterite, the original mineral of Alumen and Melanteritum respectively, of which the group names are missing. To solve these problems, field survey and literature research were conducted on the medicinal materials and their origins. The source of these problems are explored. The correct origins and the Chinese names or Latin names are all determined according to the research results to the situation, in which the Chinese and Latin names of the original plants of the medicinal materials do not match. The correct family name and group name are obtained through textual research by taxonomy if the names are confused or mis-sing. The scientific evidence and correct results of revision in the 2020 edition of ChP are determined at last.


Assuntos
Coix , Medicamentos de Ervas Chinesas , Animais , China , Medicina Tradicional Chinesa , Rizoma
3.
Molecules ; 24(4)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813387

RESUMO

Six new hybrids based on ß-[Mo8O26]4- polyoxometalates, [Ni(H2biim)3]2[ß-Mo8O26]•8DMF(1); (DMA)2[M(H2biim)2(H2O)2][ß-Mo8O26]•4DMF (M = Ni (2), Co (3)), DMA = dimethyl-ammonium, H2biim=2,2'-biimidazole); [M(H2biim)(DMF)3]2[ß-Mo8O26]•2DMF (M = Zn (4), Cu (5)); [(DMA)2[Cu(DMF)4][ß-Mo8O26]•2DMF]n (6), have been successfully synthesized and characterized. Compounds 2⁻5 show favorable capacity to adsorb methylene blue (MB) at room temperature, and they can selectively capture MB molecules from binary-mixture solutions of MB/MO (MO = Methyl Orange), or MB/RhB (RhB = Rhodamine B). Compound 3 can uptake up to 521.7 mg g-1 MB cationic dyes rapidly, which perform the maximum adsorption in an hour among the reported materials as far as we know. The compounds are stable and still work very efficiently after three cycles. For compound 3, the preliminary adsorption mechanism studies indicated that the adsorption is an ion exchange process and the adsorption behavior of polyoxometalate-complex can be benefited from additional exchangeable protons in the complex cations.


Assuntos
Imidazóis/química , Compostos de Tungstênio/química , Poluentes Químicos da Água/química , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno/química , Estrutura Molecular , Nanotecnologia , Rodaminas/química , Temperatura
4.
Zhongguo Zhong Yao Za Zhi ; 41(19): 3624-3629, 2016 Oct.
Artigo em Zh | MEDLINE | ID: mdl-28925159

RESUMO

A target cell extraction-chemical profiling method based on human alveolar adenocarcinoma cell line (A549 cells) and UHPLC/LTQ Orbitrap MS for screening the anti-lung cancer bioactive compounds from Curcuma longa has been developed in this paper. According to the hypothesis that when cells are incubated together with the extract of Curcuma longa, the potential bioactive compounds in the extract should selectively combine with the cells, then the cell-binding compounds could be separated and analyzed by LC-MS. The bioactive compounds in C. longa are lipophilic components. They intend to be absorbed on the inner wall of cell culture flask when they were incubated with A549 cells, which will produce interference in the blank solution. In this paper, by using cells digestion and multi-step centrifugation and transfer strategy, the interference problem has been solved. Finally, using the developed method, three cell-binding compounds were screened out and were identified as bisdemethoxycurcumin, demethoxycurcumin, and curcumin. These compounds are the main bioactive compounds with anti-lung cancer bioactivity in C. longa. The improved method developed in this paper could avoid the false positive results due to the absorption of lipophilic compounds on the inner wall of cell culture flask, which will to be an effective complementary method for current target cell extraction-chemical profiling technology.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Curcuma/química , Curcumina/isolamento & purificação , Extratos Vegetais/química , Células A549 , Antineoplásicos Fitogênicos/farmacologia , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Curcumina/farmacologia , Humanos
5.
Eur J Nutr ; 53(2): 395-400, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23708150

RESUMO

PURPOSE: Heme iron may contribute to the development of atherosclerosis by catalyzing production of hydroxyl-free radicals and promoting low-density lipoprotein oxidation. However, epidemiologic findings regarding the association between heme iron intake and risk of coronary heart disease (CHD) are inconsistent. We aimed to investigate the association by carrying out a meta-analysis of prospective studies. METHODS: Relevant studies were identified by using PubMed and EMBASE databases between January 1966 and April 2013 and also by manually reviewing the reference lists of retrieved publications. Summary relative risks (RRs) with corresponding 95% confidence intervals (CIs) were computed using a random-effects model. RESULTS: Six prospective studies, which contained a total of 131,553 participants and 2,459 CHD cases, met the inclusion criteria. Combined results indicated that participants with higher heme iron intake had a 31% increased risk of CHD, compared with those with lower intake (RR = 1.31, 95% CI 1.04-1.67), with significant heterogeneity (P(heterogeneity) = 0.05, I(2) = 55.0%). Excluding the only study from Japan (limiting to Western studies) yielded a RR of 1.46 (95% CI 1.21-1.76), with no study heterogeneity (P(heterogeneity) = 0.44, I(2) = 0.0%). The dose-response RR of CHD for an increase in heme iron intake of 1 mg/day was 1.27 (95% CI 1.10-1.47), with low heterogeneity (P (heterogeneity) = 0.25, I (2) = 25.8%). We observed no significant publication bias. CONCLUSIONS: This meta-analysis suggests that heme iron intake was associated with an increased risk of CHD.


Assuntos
Doença das Coronárias/induzido quimicamente , Heme/química , Ferro/efeitos adversos , Adulto , Idoso , Feminino , Fluoresceínas , Humanos , Radical Hidroxila/química , Ferro/administração & dosagem , Lipoproteínas LDL/química , Masculino , Pessoa de Meia-Idade , Ouabaína/análogos & derivados , Estudos Prospectivos , Fatores de Risco
6.
Talanta ; 270: 125558, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38183713

RESUMO

Deep eutectic solvents (DES), regarded as promising green solvents, have gained attention due to their distinctive properties, particularly in analytical chemistry. While the use of DES in solvent extraction and separation has been extensively studied, its application in the synthesis of adsorbents has just begun. Phenolic resin, with its polyhydroxy structure and stable spherical morphology, could serve as an effective as adsorbents for enrichment of active ingredients in herbal medicine. Designing adsorbents with high selectivity and adsorption capacity presents a critical challenge in the enrichment of active ingredients in herbal medicine. In this study, alcohol-based DESs were employed as regulators of morphology and structure instead of organic solvents, facilitating the creation of polyhydroxy structure, adjustable pores and high specific surface areas. The resulting DES-regulated porous phenolic resin demonstrated enhanced extraction and separation capacity for active ingredients compared to conventional spherical phenolic resin owing to the alcohol-based DES offering more interaction modes with the analytes.


Assuntos
Abietanos , Formaldeído , Fenóis , Polímeros , Salvia miltiorrhiza , Solventes/química , Salvia miltiorrhiza/química , Solventes Eutéticos Profundos , Porosidade , Extratos Vegetais/química , Etanol
7.
J Ethnopharmacol ; 331: 118265, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38677579

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese Medicines (TCMs) have emerged as a promising complementary therapy in the management of prostate cancer (PCa), particularly in addressing resistance to Docetaxel (DTX) chemotherapy. AIM OF THE REVIEW: This review aims to elucidate the mechanisms underlying the development of resistance to DTX in PCa and explore the innovative approach of integrating TCMs in PCa treatment to overcome this resistance. Key areas of investigation include alterations in microtubule proteins, androgen receptor and androgen receptor splice variant 7, ERG rearrangement, drug efflux mechanisms, cancer stem cells, centrosome clustering, upregulation of the PI3K/AKT signaling pathway, enhanced DNA damage repair capability, and the involvement of neurotrophin receptor 1/protein kinase C. MATERIALS AND METHODS: With "Prostate cancer", "Docetaxel", "Docetaxel resistance", "Natural compounds", "Traditional Chinese medicine", "Traditional Chinese medicine compound", "Medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS: Our findings underscore the intricate interplay of molecular alterations that collectively contribute to the resistance of PCa cells to DTX. Moreover, we highlight the potential of TCMs as a promising complementary therapy, showcasing their ability to counteract DTX resistance and enhance therapeutic efficacy. CONCLUSION: The integration of TCMs in PCa treatment emerges as an innovative approach with significant potential to overcome DTX resistance. This review not only provides insights into the mechanisms of resistance but also presents new prospects for improving the clinical outcomes of patients with PCa undergoing DTX therapy. The comprehensive understanding of these mechanisms lays the foundation for future research and the development of more effective therapeutic interventions.


Assuntos
Docetaxel , Resistencia a Medicamentos Antineoplásicos , Medicina Tradicional Chinesa , Neoplasias da Próstata , Humanos , Masculino , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Medicina Tradicional Chinesa/métodos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
8.
Phytomedicine ; 123: 155185, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134863

RESUMO

BACKGROUND: Elemene, an active anticancer extract derived from Curcuma wenyujin, has well-documented anticarcinogenic properties. Nevertheless, the role of elemene in prostate cancer (PCa) and its underlying molecular mechanism remain elusive. PURPOSE: This study focuses on investigating the anti-PCa effects of elemene and its underlying mechanisms. METHODS: Cell-based assays, including CCK-8, scratch, colony formation, cell cycle, and apoptosis experiments, to comprehensively assess the impact of elemene on PCa cells (LNCaP and PC3) in vitro. Additionally, we used a xenograft model with PC3 cells in nude mice to evaluate elemene in vivo efficacy. Targeted metabolomics analysis via HILIC-MS/MS was performed to investigate elemene potential target pathways, validated through molecular biology experiments, including western blotting and gene manipulation studies. RESULTS: In this study, we discovered that elemene has remarkable anti-PCa activity in both in vitro and in vivo settings, comparable to clinical chemotherapeutic drugs but with fewer side effects. Using our established targeted metabolomics approach, we demonstrated that ß-elemene, elemene's primary component, effectively inhibits glycolysis in PCa cells by downregulating 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) expression. Furthermore, we found that ß-elemene accomplishes this downregulation by upregulating p53 and FZR1. Knockdown and overexpression experiments conclusively confirmed the pivotal role of PFKFB3 in mediating ß-elemene's anti-PCa activity. CONCLUSION: This finding presents compelling evidence that elemene exerts its anti-PCa effect by suppressing glycolysis through the downregulation of PFKFB3. This study not only improves our understanding of elemene in PCa treatment but also provides valuable insights for developing more effective and safer therapies for PCa.


Assuntos
Neoplasias da Próstata , Sesquiterpenos , Espectrometria de Massas em Tandem , Masculino , Animais , Camundongos , Humanos , Camundongos Nus , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Glicólise , Proliferação de Células , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/farmacologia
9.
Zhongguo Zhong Yao Za Zhi ; 38(17): 2832-7, 2013 Sep.
Artigo em Zh | MEDLINE | ID: mdl-24380306

RESUMO

A fingerprint method for quality assessment of Fritillaria thunbergii was developed by rapid resolution liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (RRLC-Q-TOF-MS). The separation was performed using Agilent Eclipse Plus C18 column (2.1 mm x 100 mm, 1.8 microm) by gradient elution with acetonitrile and 0.1% formic acid aqueous solution (containing 10 mmol x L(-1) ammonium formate) as the mobile phase. Q-TOF-MS was used to obtain the accurate mass for precursor and product ions. Under this chromatographic and MS condition, 12 batches of F. thunbergii and its adulterants (F. hupehensis and F. pallidiflora) were analyzed by RRLC-Q-TOF-MS. Fifteen steroidal alkaloids were identified from F. thunbergii, F. hupehensis and F. pallidiflora and nine were assigned as the common characteristic peaks for F. thunbergii. The RRLC-Q-TOF-MS fingerprint of F. thunbergii was different significantly with those of F. hupehensis and F. pallidiflora. The quality of 12 batches of F. thunbergii samples were finally evaluated by hierarchical clustering analysis (HCA) and principle component analysis (PCA). This convenient and high specific method could be used to identify and evaluate the quality of the F. thunbergii.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Fritillaria/química , Espectrometria de Massas em Tandem/métodos , Alcaloides/química , Alcaloides/isolamento & purificação , China , Medicamentos de Ervas Chinesas/isolamento & purificação , Fritillaria/classificação , Controle de Qualidade , Espectrometria de Massas por Ionização por Electrospray/métodos
10.
Asian J Androl ; 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38157428

RESUMO

Prostate cancer (PCa) is one of the most common malignancies in males worldwide, and its development and progression involve the regulation of multiple metabolic pathways. Alterations in lipid metabolism affect the proliferation and metastatic capabilities of PCa cells. Cancer cells increase lipid synthesis and regulate fatty acid oxidation to meet their growth and energy demands. Similarly, changes occur in amino acid metabolism in PCa. Cancer cells exhibit an increased demand for specific amino acids, and they regulate amino acid transport and metabolic pathways to fulfill their proliferation and survival requirements. These changes are closely associated with disease progression and treatment response in PCa cells. Therefore, a comprehensive investigation of the metabolic characteristics of PCa is expected to offer novel insights and approaches for the early diagnosis and treatment of this disease.

11.
J Chromatogr A ; 1706: 464236, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37506465

RESUMO

Understanding the metabolic abnormalities of tumors is crucial for early diagnosis, prognosis, and treatment. Accurate identification and quantification of metabolites in biological samples are essential to investigate the relationship between metabolite variations and tumor development. Common techniques like LC-MS and GC-MS face challenges in measuring aberrant metabolites in tumors due to their strong polarity, isomerism, or low ionization efficiency during MS detection. Chemical derivatization of metabolites offers an effective solution to overcome these challenges. This review focuses on the difficulties encountered in analyzing aberrant metabolites in tumors, the principles behind chemical derivatization methods, and the advancements in analyzing tumor metabolites using derivatization-based chromatography. It serves as a comprehensive reference for understanding the analysis and detection of tumor metabolites, particularly those that are highly polar and exhibit low ionization efficiency.


Assuntos
Neoplasias , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Isomerismo , Neoplasias/diagnóstico
12.
Artigo em Inglês | MEDLINE | ID: mdl-37619519

RESUMO

Vaccariae Semen, derived from the dried ripe seed of Vaccaria segetalis (Neck.) Garcke, has various therapeutic characteristics in traditional Chinese medicine (TCM), containing promoting blood circulation and unblocking meridians. It exhibits significant anti-cancer activity and is therapeutically utilized to treat and reduce chemotherapy adverse effects in cancer patients, notably those with lung cancer. However, the active ingredients responsible for its anti-lung cancer efficacy remain unknown. In this study, we used A549 cell fishing in conjunction with UHPLC-LTQ Orbitrap MS to screen for anti-lung cancer active components in Vaccariae Semen. The cell counting Kit-8 (CCK-8) assay revealed that the n-butanol extract substantially reduced A549 cell growth. Through the cell fishing assay, we found 14 A549 cell-binding compounds in the n-butanol extract, all of which were identified as triterpenoid saponins. The total saponins of Vaccariae Semen were subsequently purified using macroporous adsorption resin (MAR), and they showed a significant inhibitory effect on the proliferation of A549 lung cancer cells, as well as alterations in cell morphology, apoptosis, and fragmentation. In conclusion, saponins were discovered as the key active components responsible for the anti-lung cancer activity of Vaccariae Semen.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares , Humanos , 1-Butanol , Células A549 , Cromatografia Líquida de Alta Pressão , Neoplasias Pulmonares/tratamento farmacológico , Sementes
13.
J Ethnopharmacol ; 311: 116409, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003401

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Curcuma wenyujin Y.H. Chen & C. Ling, also known as Wen-E-Zhu, has been used for cancer treatment since ancient times, with roots dating back to the Song Dynasty. Elemene (EE), a sesquiterpene extract with potent anticancer properties, is extracted from Wen-E-Zhu, with ß-elemene (BE) being its main active compound, along with trace amounts of ß-caryophyllene (BC), γ-elemene and δ-elemene isomers. EE has demonstrated broad-spectrum anti-cancer effects and is commonly used in clinical treatments for various types of malignant cancers, including lung cancer. Studies have shown that EE can arrest the cell cycle, inhibit cancer cell proliferation, and induce apoptosis and autophagy. However, the exact mechanism of its anti-lung cancer activity remains unclear and requires further research and investigation. AIM OF THE STUDY: In this study, the possible mechanism of EE and its main active components, BE and BC, against lung adenocarcinoma was investigated by using A549 and PC9 cell lines. MATERIALS AND METHODS: The subcutaneous tumor model of nude mice was constructed to evaluate the efficacy of EE in vivo, then the in vitro half-inhibitory concentration (IC50) of EE and its main active components, BE and BC, on A549 and PC9 cells at different concentrations were determined by CCK-8. Flow cytometry was used to detect the apoptosis and cycle of A549 and PC9 cells treated with different concentrations of BE and BC for 24 h. Non-targeted metabolomics analysis was performed on A549 cells to explore potential target pathways, which were subsequently verified through kit detection and western blot analysis. RESULTS: Injection of EE in A549 tumor-bearing mice effectively suppressed cancer growth in vivo. The IC50 of EE and its main active components, BE and BC, was around 60 µg/mL. Flow cytometry analysis showed that BE and BC blocked the G2/M and S phases of lung adenocarcinoma cells and induced apoptosis, leading to a significant reduction in mitochondrial membrane potential (MMP). Results from non-targeted metabolomics analysis indicated that the glutathione metabolism pathway in A549 cells was altered after treatment with the active components. Kit detection revealed a decrease in glutathione (GSH) levels and an increase in the levels of oxidized glutathione (GSSG) and reactive oxygen (ROS). Supplementation of GSH reduced the inhibitory activity of the active components on lung cancer and also decreased the ROS content of cells. Analysis of glutathione synthesis-related proteins showed a decrease in the expression of glutaminase, cystine/glutamate reverse transporter (SLC7A11), and glutathione synthase (GS), while the expression of glutamate cysteine ligase modified subunit (GCLM) was increased. In the apoptosis-related pathway, Bax protein and cleaved caspase-9/caspase-9 ratio were up-regulated and Bcl-2 protein was down-regulated. CONCLUSIONS: EE, BE, and BC showed significant inhibitory effects on the growth of lung adenocarcinoma cells, and the mechanism of action was linked to the glutathione system. By down-regulating the expression of proteins related to GSH synthesis, EE and its main active components BE and BC disrupted the cellular redox system and thereby promoted cell apoptosis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Sesquiterpenos , Animais , Camundongos , Caspase 9/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Adenocarcinoma de Pulmão/tratamento farmacológico , Neoplasias Pulmonares/patologia , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Apoptose , Glutationa/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
14.
J Drug Target ; 30(1): 82-93, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33775195

RESUMO

Tumour-associated macrophages (TAMs) represent an attractive cell target for anticancer therapy. However, selective and efficient targeting of TAMs remains difficult. Here, we constructed a novel dually functionalised nanoparticle platform (s-Tpep-NPs) by surface co-modification of nanoparticles (NPs) with tuftsin (Tpep) and legumain protease-sheddable polyethylene glycol 5k (PEG5k) to achieve selective targeted delivery to TAMs. The fluorescence resonance energy transfer experiment and in vitro cellular uptake assay confirmed that s-Tpep-NPs can responsively shed PEG5k and transform into active Tpep-NPs upon the cleavage of legumain that is overexpressed on TAM surfaces, which then promotes TAM phagocytosis through Fc receptor-mediated pathways. Owing to the shielding effect by legumain-sheddable PEG5k, s-Tpep-NPs can effectively decrease the Tpep-induced non-specific accumulation in mononuclear phagocyte system (MPS) organs during systemic circulation. Moreover, s-Tpep-NPs can significantly enhance the tumoural accumulation and improve the specificity and efficiency of targeting to TAMs, as compared with both controls of Tpep-NPs and non-sheddable ns-Tpep-NPs. Overall, this study provides a robust nanoplatform with a novel avenue for improved selectivity of targeted delivery to TAMs.


Assuntos
Nanopartículas , Tuftsina , Cisteína Endopeptidases , Peptídeo Hidrolases , Polietilenoglicóis , Macrófagos Associados a Tumor
15.
J Chromatogr A ; 1686: 463654, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36434830

RESUMO

Metabolic reprogramming of cancer cells is a hallmark of cancer, in which the polar metabolites involving aerobic glycolysis, pentose phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, and glutaminolysis play a crucial role in the occurrence and development of cancer. Therefore, targeted analysis of the polar metabolites in these pathways is of great value for understanding cancers, finding diagnostic biomarkers, and identifying therapeutic targets. However, it is still challenging to directly determine polar metabolites in these pathways without derivatization due to their diverse chemical properties, isomers, and strong polarity. Herein, a highly selective and sensitive HILIC-MS/MS method was developed for direct determination of the polar metabolites in aerobic glycolysis, PPP, TCA cycle, and glutaminolysis pathways. Without derivatization, 19 polar metabolites and their isomers with carbonyl, carboxyl, or phosphoryl groups in human plasma and cell extracts of prostate cancer (PC) were determined with strong retention and high resolution. This method has been widely verified by measuring linearity, precision, sensitivity, repeatability, matrix effect, and accuracy. The analysis of plasma samples by HILIC-MS/MS revealed distinct PC-specific metabolic signatures compared to a healthy control. In addition, this method could also be used to screen the targets of metabolic inhibitors at the cellular level. We conclude that the developed HILIC-MS/MS method provides a valuable means to study the cancer metabolic reprogramming or energy metabolism in living organisms.


Assuntos
Neoplasias da Próstata , Espectrometria de Massas em Tandem , Humanos , Masculino , Cromatografia Líquida , Metabolismo Energético , Interações Hidrofóbicas e Hidrofílicas
16.
J Ethnopharmacol ; 283: 114670, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34653522

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fritillariae thunbergii Miq (FTM)exhibit versatile biological activities including the significant antitussive and expectorant activities. As a herbal medicine, the therapeutic effects of FTM may be expressed by multi-components which have complicated integration effects on multi-targets. With the time going, the different processing methods of FTM has been changed a lot. Thus,the study described the effect of processing methods to FTM and its quality. MATERIAL AND METHOD: Studies were undertaken by using UHPLC-LTQ Orbitrap MS and pharmacodynamic models. All reagents were involved of analytical grade. While a HPLC-ELSD's method has been developed and validated, a certified Quality System is conformed to ICH requirements. The experimental animals followed the animal welfare guidelines. AIM OF THE STUDY: We aimed to found the differences after the different processing methods of FTM, and to demonstrate the changes could be selected as quality control indicators, and established a method for simultaneous determination of these for quality control. RESULTS: we have previously found two new steroidal alkaloids: zhebeininoside and imperialine-3-ß-D-glucoside from the different processing methods of FTM, which is the difference between the different processing methods of FTM, mainly on the steroidal alkaloids. The activity analysis of zhebeininoside, imperialine-3-ß-D-glucoside, verticine and verticinone showed that the mouse model of cough expectorant has antitussive effect. The positive drug selected was dextromethorphan syrup. The positive group showed biological activity, but the blank group showed nothing. The model group showed illness which means that the model was effective. There are two ways of the mechanism of action of the expectorant action which can make sputum thin, reduce its viscosity, and be easy to cough up, or can accelerate the movement of mucous cilia in the respiratory tract and promote the discharge of sputum. In our study, the content of phenol red was significantly reduced in the administration group. CONCLUSIONS: To sum up, our results suggest that zhebeininoside and other three components cloud be selected as quality control indicators, and a method for simultaneous determination of zhebeininoside and other three components was established for quality control.


Assuntos
Antitussígenos , Cevanas , Tosse , Medicamentos de Ervas Chinesas , Fritillaria , Animais , Camundongos , Amônia/toxicidade , Antitussígenos/química , Antitussígenos/normas , Antitussígenos/uso terapêutico , Cevanas/química , Tosse/induzido quimicamente , Tosse/tratamento farmacológico , Dextrometorfano/uso terapêutico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/normas , Medicamentos de Ervas Chinesas/uso terapêutico , Fritillaria/química , Fitoterapia , Caules de Planta/química , Controle de Qualidade , Distribuição Aleatória
17.
Phytomedicine ; 86: 153559, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33857848

RESUMO

BACKGROUND: Due to the diversity of the ingredients, the complexity of the mechanism of action, the uncertainty of the effective ingredients, coupled with the multiple species and multiple growing areas, the quality control (QC) of Traditional Chinese Medicines (TCMs) is challenging. Discovering and identifying effective compounds from the complex extracts of TCMs and then establishing a scientific QC method is the key to the holistic QC of TCMs. PURPOSE: To develop an anti-lung-cancer-guided spectrum-effect relationship approach for the discovery of QC markers of the rhizome of Curcuma wenyujin (WEZ) and establish a bioactive compounds-based holistic QC method. METHODS: The chemical profiling of the volatile oil (WVO) from 42 batches of WEZ collected from different growing areas was performed by GC-MS. The anti-lung cancer activity of different WVO samples was determined by CCK-8 assay against human lung cancer cells (A549). The apoptosis and cell cycle analysis under different concentrations of WVO were detected by flow cytometry. SIMCA-P software was used to perform multivariate statistical analysis on the chemical composition of different WVO samples and to find the different components. Active compounds were screened using a PLSR model of the spectrum-effect relationship. Bioactive compounds-based fingerprint and quantification of the leading bioactive compounds were developed by GC-MS and GC-FID, respectively. RESULTS: Seventy-eight compounds were detected in WVO and 54 were successfully identified. The multivariate statistical analysis uncovered that WVO components and the anti-A549 activity of WVO at the concentration of 60 nl/ml differ greatly according to the origin of the plant. The WVO at the concentration of 60 nl/ml (IC50) increased A549 cells apoptosis significantly with late and early apoptosis of 15.61% and 7.80%, and the number of cells in the G2/M phase were also increased significantly under this concentration. The spectrum-effect relationship analysis revealed that 44 compounds were positively correlated with their activities, and the result was verified by A549 cell viability assay. Sixteen positively correlated compounds were further selected as QC markers according to their relative amount > 0.5% and anticancer activity. Finally, the 16 QC markers-based GC-MS fingerprint was established to holistically control the quality of WEZ, and a GC-FID method was developed for the quantification of leading bioactive compounds, ß-elemene and ß-caryophyllene. CONCLUSION: Based on an anti-lung-cancer-guided spectrum-effect relationship approach, the bioactive compounds-based holistic QC method was successfully developed for WEZ, which could provide a valuable reference for the QC of TCMs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Biomarcadores/análise , Curcuma/química , Medicamentos de Ervas Chinesas/química , Células A549 , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Biomarcadores/química , Medicamentos de Ervas Chinesas/farmacologia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Óleos Voláteis/química , Sesquiterpenos Policíclicos/análise , Sesquiterpenos Policíclicos/farmacologia , Controle de Qualidade , Rizoma/química , Sesquiterpenos/análise , Sesquiterpenos/farmacologia
18.
RSC Adv ; 11(27): 16510-16521, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35479169

RESUMO

The valve replacement is the main treatment of heart valve disease. However, thrombus formation following valve replacement has always been a major clinical drawback. Accelerating the endothelialization of cardiac valve prosthesis is the main approach to reduce thrombus. In the current study, a titanium nanotube was biofunctionalized with a chitosan/genipin heparin hydrogel and the controlled release of interleukin-4 (IL-4), and its regulation of macrophages was investigated to see if it could influence endothelial cells to eventually accelerate endothelialization. TNT60 (titanium dioxide nanotubes, 60 V) with nanoarray was obtained by anodic oxidation of 60 V, and IL-4 was loaded into the nanotube by vacuum drying. The hydrogel (chitosan : genipin = 4 : 1) was applied to the surface of the nanotubes following drying, and the heparin drops were placed on the hydrogel surface with chitosan as the polycation and heparin as the polyanion. A TNT/IL-4/G (G = gel, chitosan/genipin heparin) delivery system was prepared. Our results demonstrated that the biofunctionalization of titanium nanotube with chitosan/genipin heparin hydrogel and the controlled release of IL-4 had a significant regulatory effect on macrophage M2 polarization, reducing the inflammatory factor release and higher secretion of VEGF (vascular endothelial growth factor), which can accelerate the endothelialization of the implant.

19.
J Ethnopharmacol ; 267: 113467, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058923

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Herbal medicines (HMs) often exert integration effects, including synergistic, additive and antagonistic effects, in such ways that they act on multiple targets and multiple pathways on account of their multiple components. Turmeric, made from the rhizome of Curcuma longa L., is a well-known HM prescribed in the polyherbal formulas for cancer treatment in traditional Chinese medicines (TCMs). However, neither the multiple anticancer compounds of turmeric nor the integration effects of these components are fully known. AIM OF THE STUDY: This work aims to develop a systematic approach to reveal the integration effect mechanisms of multiple anticancer compounds in turmeric against prostate cancer PC3 cells. MATERIALS AND METHODS: Combination index and omics technologies were applied to profile the integration effect mechanisms of bioactive compounds in proportions naturally found in turmeric. PC3 cell line (a prostate cancer cell line) fishing and high resolution mass spectrometry were employed to screen and identify the anticancer compounds from turmeric. The combinations which contain different cell-bound compounds in natural proportions were prepared for further evaluation of anti-cancer activity by using cell viability assays, and assessment of cell apoptosis and cell cycle analysis. Combination index analysis was applied to study the integration effects of the anticancer compounds in their natural proportions. Finally, quantitative glycoproteomics/proteomics and Western blot were implemented to reveal the potential synergistic effect mechanisms of the anticancer compounds based on their natural proportions in turmeric. RESULTS: Three curcuminoids (curcumin, CUR; demethoxycurcumin, DMC; bisdemethoxycurcumin, BDMC) in turmeric were discovered and shown to possess significant synergistic anticancer activities. Combination index analysis revealed an additive effect of CUR combined with DMC or BDMC and a slight synergistic effect of DMC combined with BDMC in natural proportions in turmeric, while a combination of all three curcuminoids (CUR, DMC and BDMC) at a ratio of 1:1:1 yielded superior synergistic effects. Interestingly, the presence of BDMC and DMC are essential for synergistic effect. Glycoproteomics and proteomics demonstrated that different curcuminoids regulate various protein pathways, such as ribosome, glycolysis/gluconeogenesis, biosynthesis of amino acids, and combination of CUR + DMC + BDMC showed the most powerful effects on down-regulation of protein expression. CONCLUSIONS: Our analytical approach provides a systematic understanding of the holistic activity and integration effects of the anti-cancer compounds in turmeric and three curcuminoids of turmeric showed a synergistic effect on PC3 cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Curcuma , Diarileptanoides/farmacologia , Glicômica , Glicoproteínas/metabolismo , Extratos Vegetais/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Proteômica , Antineoplásicos Fitogênicos/isolamento & purificação , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Curcuma/química , Diarileptanoides/isolamento & purificação , Sinergismo Farmacológico , Humanos , Masculino , Células PC-3 , Extratos Vegetais/isolamento & purificação , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Mapas de Interação de Proteínas , Transdução de Sinais
20.
Rapid Commun Mass Spectrom ; 24(22): 3261-70, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-20973000

RESUMO

Oleanane-type triterpene saponins (OTS) are major active ingredients in Glycyrrhiza uralensis. In this work, a rapid-resolution liquid chromatography with time-of-flight mass spectrometry (RRLC/TOF-MS) method has been developed to characterize and identify OTS from G. uralensis. The major diagnostic ions and fragmentation pathways from thirteen OTS have been characterized for the first time. At a low fragmentor voltage of 120 V in positive ion mode, the precursor ion [M + H](+) or/and [M + Na](+) was obtained for accurate determination of molecular formula. When the fragmentor voltage was increased to 425 V, abundant characteristic fragment ions were observed for structural characterization. Neutral losses of sugar moieties, such as glucuronic acid (GlcA, 176 Da), glucose (Glc, 162 Da) and rhamnose (Rha, 146 Da), were commonly observed in the MS spectra for prediction of the sugar number and sequences. Other typical losses included AcOH (60 Da), CH(2)O (30 Da), 2 × H(2)O (2 × 18 Da) and HCOOH (46 Da) from [Aglycone + H-H(2)O](+) (named [B](+)), corresponding to the presence of a C(22)-acetyl group, C(24)-hydroxyl group, C(22)-hydroxyl group or C(30)-carboxyl group on the aglycone moiety, respectively. In particular, characteristic ring cleavages of the aglycone moieties on A- and B-rings were observed. Based on the fragmentation patterns of reference compounds, nineteen OTS have been identified in an extract of G. uralensis, thirteen of which were unambiguously identified and the other six were tentatively assigned.


Assuntos
Cromatografia Líquida/métodos , Glycyrrhiza uralensis/química , Saponinas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Triterpenos/química , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Extratos Vegetais/química , Raízes de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA