Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Methods ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014073

RESUMO

RNA structural switches are key regulators of gene expression in bacteria, but their characterization in Metazoa remains limited. Here, we present SwitchSeeker, a comprehensive computational and experimental approach for systematic identification of functional RNA structural switches. We applied SwitchSeeker to the human transcriptome and identified 245 putative RNA switches. To validate our approach, we characterized a previously unknown RNA switch in the 3' untranslated region of the RORC (RAR-related orphan receptor C) transcript. In vivo dimethyl sulfate (DMS) mutational profiling with sequencing (DMS-MaPseq), coupled with cryogenic electron microscopy, confirmed its existence as two alternative structural conformations. Furthermore, we used genome-scale CRISPR screens to identify trans factors that regulate gene expression through this RNA structural switch. We found that nonsense-mediated messenger RNA decay acts on this element in a conformation-specific manner. SwitchSeeker provides an unbiased, experimentally driven method for discovering RNA structural switches that shape the eukaryotic gene expression landscape.

2.
Proc Natl Acad Sci U S A ; 120(46): e2215285120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931110

RESUMO

The insulin-like growth factor 2 (IGF2) plays critical roles in cell proliferation, migration, differentiation, and survival. Despite its importance, the molecular mechanisms mediating the trafficking of IGF2 along the secretory pathway remain unclear. Here, we utilized a Retention Using Selective Hook system to analyze molecular mechanisms that regulate the secretion of IGF2. We found that a type I transmembrane protein, TMED10, is essential for the secretion of IGF2 and for differentiation of mouse myoblast C2C12 cells. Further analyses indicate that the residues 112-140 in IGF2 are important for the secretion of IGF2 and these residues directly interact with the GOLD domain of TMED10. We then reconstituted the release of IGF2 into COPII vesicles. This assay suggests that TMED10 mediates the packaging of IGF2 into COPII vesicles to be efficiently delivered to the Golgi. Moreover, TMED10 also mediates ER export of TGN-localized cargo receptor, sortilin, which subsequently mediates TGN export of IGF2. These analyses indicate that TMED10 is critical for IGF2 secretion by directly regulating ER export and indirectly regulating TGN export of IGF2, providing insights into trafficking of IGF2 for myoblast differentiation.


Assuntos
Fator de Crescimento Insulin-Like II , Mioblastos , Via Secretória , Proteínas de Transporte Vesicular , Animais , Camundongos , Diferenciação Celular , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753492

RESUMO

Adult mouse muscle satellite cells (MuSCs) are quiescent in uninjured muscles. Upon muscle injury, MuSCs exit quiescence, reenter the cell cycle to proliferate and self-renew, and then differentiate and fuse to drive muscle regeneration. However, it remains poorly understood how MuSCs transition from quiescence to the cycling state. Here, we report that Pax3 and Pax7 binding protein 1 (Paxbp1) controls a key checkpoint during this critical transition. Deletion of Paxbp1 in adult MuSCs prevented them from reentering the cell cycle upon injury, resulting in a total regeneration failure. Mechanistically, we found an abnormal elevation of reactive oxygen species (ROS) in Paxbp1-null MuSCs, which induced p53 activation and impaired mTORC1 signaling, leading to defective cell growth, apoptosis, and failure in S-phase reentry. Deliberate ROS reduction partially rescued the cell-cycle reentry defect in mutant MuSCs. Our study reveals that Paxbp1 regulates a late cell-growth checkpoint essential for quiescent MuSCs to reenter the cell cycle upon activation.


Assuntos
Células-Tronco Adultas/fisiologia , Pontos de Checagem do Ciclo Celular , Proteínas Nucleares/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Técnicas de Inativação de Genes , Microscopia Intravital , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Imagem com Lapso de Tempo
4.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163665

RESUMO

Skeletal muscle harbors a pool of stem cells called muscle satellite cells (MuSCs) that are mainly responsible for its robust regenerative capacities. Adult satellite cells are mitotically quiescent in uninjured muscles under homeostasis, but they exit quiescence upon injury to re-enter the cell cycle to proliferate. While most of the expanded satellites cells differentiate and fuse to form new myofibers, some undergo self-renewal to replenish the stem cell pool. Specifically, quiescence exit describes the initial transition of MuSCs from quiescence to the first cell cycle, which takes much longer than the time required for subsequent cell cycles and involves drastic changes in cell size, epigenetic and transcriptomic profiles, and metabolic status. It is, therefore, an essential period indispensable for the success of muscle regeneration. Diverse mechanisms exist in MuSCs to regulate quiescence exit. In this review, we summarize key events that occur during quiescence exit in MuSCs and discuss the molecular regulation of this process with an emphasis on multiple levels of intrinsic regulatory mechanisms. A comprehensive understanding of how quiescence exit is regulated will facilitate satellite cell-based muscle regenerative therapies and advance their applications in various disease and aging conditions.


Assuntos
Ciclo Celular , Células Satélites de Músculo Esquelético/citologia , Adulto , Animais , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Biológicos , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais
5.
Nat Cancer ; 4(5): 682-698, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37169843

RESUMO

Antisense RNAs are ubiquitous in human cells, yet their role is largely unexplored. Here we profiled antisense RNAs in the MDA-MB-231 breast cancer cell line and its highly lung metastatic derivative. We identified one antisense RNA that drives cancer progression by upregulating the redox enzyme NADPH quinone dehydrogenase 1 (NQO1), and named it NQO1-AS. Knockdown of either NQO1 or NQO1-AS reduced lung colonization in a mouse model, and investigation into the role of NQO1 indicated that it is broadly protective against oxidative damage and ferroptosis. Breast cancer cells in the lung are dependent on this pathway, and this dependence can be exploited therapeutically by inducing ferroptosis while inhibiting NQO1. Together, our findings establish a role for NQO1-AS in the progression of breast cancer by regulating its sense mRNA post-transcriptionally. Because breast cancer predominantly affects females, the disease models used in this study are of female origin and the results are primarily applicable to females.


Assuntos
Neoplasias da Mama , Segunda Neoplasia Primária , Neoplasias Cutâneas , Animais , Camundongos , Feminino , Humanos , Neoplasias da Mama/genética , RNA Antissenso , Quinonas/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Melanoma Maligno Cutâneo
6.
Cell Discov ; 8(1): 61, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764624

RESUMO

During development, different cell types originate from a common progenitor at well-defined time points. Previous lineage-tracing of Pax7+ progenitors from the somitic mesoderm has established its developmental trajectory towards the dermis, brown adipocytes, and skeletal muscle in the dorsal trunk; yet the molecular switches and mechanisms guiding the differentiation into different lineages remain unknown. We performed lineage-tracing of Pax7-expressing cells in mouse embryos at E9.5 and profiled the transcriptomes of Pax7-progenies on E12.5, E14.5, and E16.5 at single-cell level. Analysis of single-cell transcriptomic data at multiple time points showed temporal-specific differentiation events toward muscle, dermis, and brown adipocyte, identified marker genes for putative progenitors and revealed transcription factors that could drive lineage-specific differentiation. We then utilized a combination of surface markers identified in the single-cell data, Pdgfra, Thy1, and Cd36, to enrich brown adipocytes, dermal fibroblasts, and progenitors specific for these two cell types at E14.5 and E16.5. These enriched cell populations were then used for further culture and functional assays in vitro, in which Wnt5a and Rgcc are shown to be important factors that could alter lineage decisions during embryogenesis. Notably, we found a bipotent progenitor population at E14.5, having lineage potentials towards both dermal fibroblasts and brown adipocytes. They were termed eFAPs (embryonic fibro/adipogenic progenitors) as they functionally resemble adult fibro/adipogenic progenitors. Overall, this study provides further understanding of the Pax7 lineage during embryonic development using a combination of lineage tracing with temporally sampled single-cell transcriptomics.

7.
Cell Rep ; 39(9): 110884, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649375

RESUMO

Muscle regeneration is known to be defective under diabetic conditions. However, the underlying mechanisms remain less clear. Adult quiescent muscle satellite cells (MuSCs) from leptin-receptor-deficient (i.e., db/db) diabetic mice are defective in early activation in vivo, but not in culture, suggesting the involvement of pathogenic niche factors. Elevated extracellular adenosine (eAdo) and AMP (eAMP) are detected under diabetic conditions. eAdo and eAMP potently inhibit cell cycle re-entry of quiescent MuSCs and injury-induced muscle regeneration. Mechanistically, eAdo and eAMP engage the equilibrative Ado transporters (ENTs)-Ado kinase (ADK)-AMPK signaling axis in MuSCs to inhibit the mTORC1-dependent cell growth checkpoint. eAdo and eAMP also inhibit early activation of quiescent fibroadipogenic progenitors and human MuSCs by the same mechanism. Treatment of db/db diabetic mice with an ADK inhibitor partially rescues the activation defects of MuSCs in vivo. Thus, both ADK and ENTs represent potential therapeutic targets for restoring the regenerative functions of tissue stem cells in patients with diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Adenosina , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos , Músculos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA