Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Rev Med Virol ; 32(6): e2394, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36069169

RESUMO

Herpes simplex virus type 1 (HSV-1) is an important human pathogen with neurotropism. Following lytic infection in mucosal or skin epithelium, life-long latency is established mainly in sensory neurons, which can periodically reactivate by stress, leading to recurrent disease and virus transmission. During the virus's productive infection, the tegument protein VP16, a component of HSV-1 virion, is physically associated with two cellular factors, host cell factor-1 (HCF-1), and POU domain protein Oct-1, to construct the VP16-induced complex, which is essential to stimulate immediate early (IE)-gene transcription as well as initiate the lytic programme. Apart from HCF-1 and Oct-1, VP16 also associates with a series of other host factors, making a VP16-induced regulatory switch to either activate or inactivate virus gene transcription. In addition, VP16 has effects on distinct signalling pathways via binding to various host molecules that are essentially related to innate immune responses, RNA polymerases, molecular chaperones, and virus infection-induced host shutoff. VP16 also functionally compensates for given host factors, such as PPAR-γ and ß-catenin. In this review, we provide an overview of the updated insights on the interplay between VP16 and the host factors that coordinate virus infection.


Assuntos
Herpesvirus Humano 1 , Fatores de Transcrição , Humanos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Herpesvirus Humano 1/metabolismo , Proteína Vmw65 do Vírus do Herpes Simples/química , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Fator C1 de Célula Hospedeira , Etoposídeo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
2.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216447

RESUMO

Oncolytic bovine herpesvirus type 1 (BoHV-1) infection induces DNA damage in human lung adenocarcinoma cell line A549. However, the underlying mechanisms are not fully understood. We found that BoHV-1 infection decreased the steady-state protein levels of p53-binding protein 1 (53BP1), which plays a central role in dictating DNA damage repair and maintaining genomic stability. Furthermore, BoHV-1 impaired the formation of 53BP1 foci, suggesting that BoHV-1 inhibits 53BP1-mediated DNA damage repair. Interestingly, BoHV-1 infection redistributed intracellular ß-catenin, and iCRT14 (5-[[2,5-Dimethyl-1-(3-pyridinyl)-1H-pyrrol-3-yl]methylene]-3-phenyl-2,4-thiazolidinedione), a ß-catenin-specific inhibitor, enhanced certain viral protein expression, such as the envelope glycoproteins gC and gD, and enhanced virus infection-induced DNA damage. Therefore, for the first time, we provide evidence showing that BoHV-1 infection disrupts 53BP1-mediated DNA damage repair and suggest ß-catenin as a potential host factor restricting both virus replication and DNA damage in A549 cells.


Assuntos
Adenocarcinoma de Pulmão/genética , Dano ao DNA/efeitos dos fármacos , Infecções por Herpesviridae/genética , Neoplasias Pulmonares/genética , Piridinas/farmacologia , Pirróis/farmacologia , Tiazolidinedionas/farmacologia , Proteínas Virais/genética , beta Catenina/antagonistas & inibidores , Células A549 , Linhagem Celular Tumoral , Dano ao DNA/genética , Herpesvirus Bovino 1/patogenicidade , Humanos , Replicação Viral/efeitos dos fármacos
3.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796067

RESUMO

Neurotropic Alphaherpesvirinae subfamily members such as bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) establish and maintain lifelong latent infections in neurons. Following infection of ocular, oral, or nasal cavities, sensory neurons within trigeminal ganglia (TG) are an important site for latency. Certain external stressors can trigger reactivation from latency, in part because activation of the glucocorticoid receptor (GR) stimulates productive infection and promoters that drive expression of key viral transcriptional regulators. The Akt serine/threonine protein kinase family is linked to maintaining latency. For example, Akt3 is detected in more TG neurons during BoHV-1 latency than in reactivation and uninfected calves. Furthermore, Akt signaling correlates with maintaining HSV-1 latency in certain neuronal models of latency. Finally, an active Akt protein kinase is crucial for the ability of the HSV-1 latency-associated transcript (LAT) to inhibit apoptosis in neuronal cell lines. Consequently, we hypothesized that viral and/or cellular factors impair stress-induced transcription and reduce the incidence of reactivation triggered by low levels of stress. New studies demonstrate that Akt1 and Akt2, but not Akt3, significantly reduced GR-mediated transactivation of the BoHV-1 immediate early transcription unit 1 (IEtu1) promoter, the HSV-1 infected cell protein 0 (ICP0) promoter, and the mouse mammary tumor virus long terminal repeat (MMTV-LTR). Akt3, but not Akt1 or Akt2, significantly enhanced neurite formation in mouse neuroblastoma cells, which correlates with repairing damaged neurons. These studies suggest that unique biological properties of the three Akt family members promote the maintenance of latency in differentiated neurons.IMPORTANCE External stressful stimuli are known to increase the incidence of reactivation of Alphaherpesvirinae subfamily members. Activation of the glucocorticoid receptor (GR) by the synthetic corticosteroid dexamethasone (DEX) stimulates bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) reactivation. Furthermore, GR and dexamethasone stimulate productive infection and promoters that drive expression of viral transcriptional regulators. These observations lead us to predict that stress-induced transcription is impaired by factors abundantly expressed during latency. Interestingly, activation of the Akt family of serine/threonine protein kinases is linked to maintenance of latency. New studies reveal that Akt1 and Ak2, but not Akt3, impaired GR- and dexamethasone-mediated transactivation of the BoHV-1 immediate early transcription unit 1 and HSV-1 ICP0 promoters. Strikingly, Akt3, but not Akt1 or Akt2, stimulated neurite formation in mouse neuroblastoma cells, a requirement for neurogenesis. These studies provide insight into how Akt family members may promote the maintenance of lifelong latency.


Assuntos
Herpes Simples/imunologia , Infecções por Herpesviridae/imunologia , Interações Hospedeiro-Patógeno/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Células Receptoras Sensoriais/virologia , Animais , Bovinos , Diferenciação Celular , Linhagem Celular Tumoral , Herpes Simples/genética , Herpes Simples/patologia , Herpes Simples/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/imunologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/imunologia , Camundongos , Neuritos/imunologia , Neuritos/ultraestrutura , Neuritos/virologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/imunologia , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/patologia , Transdução de Sinais , Ativação Transcricional/imunologia , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia
4.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34445287

RESUMO

Bovine herpesvirus 1 (BoHV-1) is a promising oncolytic virus with broad antitumor spectrum; however, its oncolytic effects on human lung adenocarcinoma in vivo have not been reported. In this study, we report that BoHV-1 can be used as an oncolytic virus for human lung adenocarcinoma, and elucidate the underlying mechanism of how BoHV-1 suppresses tumor cell proliferation and growth. First, we examined the oncolytic activities of BoHV-1 in human lung adenocarcinoma A549 cells. BoHV-1 infection reduced the protein levels of histone deacetylases (HDACs), including HDAC1-4 that are promising anti-tumor drug targets. Furthermore, the HDAC inhibitor Trichostatin A (TSA) promoted BoHV-1 infection and exacerbated DNA damage and cytopathology, suggesting a synergy between BoHV-1 and TSA. In the A549 tumor xenograft mouse model, we, for the first time, showed that BoHV-1 can infect tumor and suppressed tumor growth with a similar high efficacy as the treatment of TSA, and HDACs have potential effects on the virus replication. Taken together, our study demonstrates that BoHV-1 has oncolytic effects against human lung adenocarcinoma in vivo.


Assuntos
Adenocarcinoma de Pulmão/patologia , Herpesvirus Bovino 1/fisiologia , Neoplasias Pulmonares/patologia , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/virologia , Animais , Proliferação de Células/genética , Células Cultivadas , Cricetinae , Dano ao DNA , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30971470

RESUMO

Herpes simplex virus 1 (HSV-1) establishes lifelong latent infections in neurons. Reactivation from latency can lead to serious recurrent disease, including stromal keratitis, corneal scarring, blindness, and encephalitis. Although numerous studies link stress to an increase in the incidence of reactivation from latency and recurrent disease, the mechanism of action is not well understood. We hypothesized that stress, via corticosteroid-mediated activation of the glucocorticoid receptor (GR), stimulates viral gene expression and productive infection during reactivation from latency. Consequently, we tested whether GR activation by the synthetic corticosteroid dexamethasone influenced virus shedding during reactivation from latency using trigeminal ganglion (TG) explants from Swiss Webster mice latently infected with HSV-1, strain McKrae. TG explants from the latently infected mice shed significantly higher levels of virus when treated with dexamethasone. Conversely, virus shedding from TG explants was significantly impaired when they were incubated with medium containing a GR-specific antagonist (CORT-108297) or stripped fetal bovine serum, which lacks nuclear hormones and other growth factors. TG explants from latently infected, but not uninfected, TG contained significantly more GR-positive neurons following explant when treated with dexamethasone. Strikingly, VP16 protein expression was detected in TG neurons at 8 hours after explant whereas infected-cell protein 0 (ICP0) and ICP4 protein expression was not readily detected until 16 hours after explant. Expression of all three viral regulatory proteins was stimulated by dexamethasone. These studies indicated corticosteroid-mediated GR activation increased the number of TG neurons expressing viral regulatory proteins, which enhanced virus shedding during explant-induced reactivation from latency.IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latent infections in neurons within trigeminal ganglia (TG); periodically, reactivation from latency occurs, leading to virus transmission and recurrent disease. Chronic or acute stress increases the frequency of reactivation from latency; how this occurs is not well understood. Here, we demonstrate that the synthetic corticosteroid dexamethasone stimulated explant-induced reactivation from latency. Conversely, a glucocorticoid receptor (GR) antagonist significantly impaired reactivation from latency, indicating that GR activation stimulated explant-induced reactivation. The viral regulatory protein VP16 was readily detected in TG neurons prior to infected-cell protein 0 (ICP0) and ICP4 during explant-induced reactivation. Dexamethasone induced expression of all three viral regulatory proteins following TG explant. Whereas the immunosuppressive properties of corticosteroids would facilitate viral spread during reactivation from latency, these studies indicate GR activation increases the number of TG neurons that express viral regulatory proteins during early stages of explant-induced reactivation.


Assuntos
Herpesvirus Humano 1/fisiologia , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/metabolismo , Latência Viral/efeitos dos fármacos , Latência Viral/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Regulação Viral da Expressão Gênica , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Herpesvirus Humano 1/genética , Proteínas Imediatamente Precoces/metabolismo , Camundongos , Neurônios/virologia , Estresse Fisiológico , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ativação Viral/genética , Ativação Viral/fisiologia , Latência Viral/genética , Eliminação de Partículas Virais
6.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321317

RESUMO

Sensory neurons in trigeminal ganglia (TG) of calves latently infected with bovine herpesvirus 1 (BoHV-1) abundantly express latency-related (LR) gene products, including a protein (ORF2) and two micro-RNAs. Recent studies in mouse neuroblastoma cells (Neuro-2A) demonstrated ORF2 interacts with ß-catenin and a ß-catenin coactivator, high-mobility group AT-hook 1 (HMGA1) protein, which correlates with increased ß-catenin-dependent transcription and cell survival. ß-Catenin and HMGA1 are readily detected in a subset of latently infected TG neurons but not TG neurons from uninfected calves or reactivation from latency. Consequently, we hypothesized that the Wnt/ß-catenin signaling pathway is differentially expressed during the latency and reactivation cycle and an active Wnt pathway promotes latency. RNA-sequencing studies revealed that 102 genes associated with the Wnt/ß-catenin signaling pathway were differentially expressed in TG during the latency-reactivation cycle in calves. Wnt agonists were generally expressed at higher levels during latency, but these levels decreased during dexamethasone-induced reactivation. The Wnt agonist bone morphogenetic protein receptor 2 (BMPR2) was intriguing because it encodes a serine/threonine receptor kinase that promotes neuronal differentiation and inhibits cell death. Another differentially expressed gene encodes a protein kinase (Akt3), which is significant because Akt activity enhances cell survival and is linked to herpes simplex virus 1 latency and neuronal survival. Additional studies demonstrated ORF2 increased Akt3 steady-state protein levels and interacted with Akt3 in transfected Neuro-2A cells, which correlated with Akt3 activation. Conversely, expression of Wnt antagonists increased during reactivation from latency. Collectively, these studies suggest Wnt signaling cooperates with LR gene products, in particular ORF2, to promote latency.IMPORTANCE Lifelong BoHV-1 latency primarily occurs in sensory neurons. The synthetic corticosteroid dexamethasone consistently induces reactivation from latency in calves. RNA sequencing studies revealed 102 genes associated with the Wnt/ß-catenin signaling pathway are differentially regulated during the latency-reactivation cycle. Two protein kinases associated with the Wnt pathway, Akt3 and BMPR2, were expressed at higher levels during latency but were repressed during reactivation. Furthermore, five genes encoding soluble Wnt antagonists and ß-catenin-dependent transcription inhibitors were induced during reactivation from latency. These findings are important because Wnt, BMPR2, and Akt3 promote neurogenesis and cell survival, processes crucial for lifelong viral latency. In transfected neuroblastoma cells, a viral protein expressed during latency (ORF2) interacts with and enhances Akt3 protein kinase activity. These findings provide insight into how cellular factors associated with the Wnt signaling pathway cooperate with LR gene products to regulate the BoHV-1 latency-reactivation cycle.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/biossíntese , Regulação Enzimológica da Expressão Gênica , Herpesvirus Bovino 1/fisiologia , Proteínas Proto-Oncogênicas c-akt/biossíntese , Células Receptoras Sensoriais/imunologia , Gânglio Trigeminal/enzimologia , Ativação Viral/fisiologia , Latência Viral/fisiologia , Via de Sinalização Wnt , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Bovinos , Sobrevivência Celular , Proteínas Proto-Oncogênicas c-akt/genética , Células Receptoras Sensoriais/patologia , Células Receptoras Sensoriais/virologia , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia
7.
Biologicals ; 57: 61-66, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30477957

RESUMO

Bovine viral diarrhea virus (BVDV) fall into cytopathic (CP) and noncytopathic (NCP) biotypes, based on their ability to kill cultured cells. NCP-BVDV can not be titrated by conventional means as used for CP-BVDV, which has impeded the identification of antiviral drugs targeting NCP-BVDV virus strains. In this study, the application of an immunoperoxidase assay in the screening of antiviral drugs was tested using two known BVDV inhibitors, ribavirin and ammonium chloride (NH4Cl). Phospholipase C inhibitor U73122 was identified to affect BVDV infection by using this immunoperoxidase assay. In addition, the results of immunoperoxidase assay were validated by real-time PCR. Taken together, the immunoperoxidase assay is a useful and versatile method suitable for antiviral drug screening targeting NCP-BVDV.


Assuntos
Antivirais/farmacologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/tratamento farmacológico , Vírus da Diarreia Viral Bovina/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Técnicas Imunoenzimáticas/métodos , Cloreto de Amônio/farmacologia , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Efeito Citopatogênico Viral/efeitos dos fármacos , Vírus da Diarreia Viral Bovina/fisiologia , Estrenos/farmacologia , Técnicas Imunoenzimáticas/normas , Pirrolidinonas/farmacologia , Ribavirina/farmacologia , Replicação Viral/efeitos dos fármacos
8.
Mediators Inflamm ; 2019: 7072917, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31011285

RESUMO

Reactive oxidative species (ROS) are important inflammatory mediators. Electrons escaping from the mitochondrial electron transport chain (ETC) during oxidative phosphorylation (OXPHOS) in the mitochondrial respiratory chain (RC) complexes contribute to ROS production. The cellular antioxidant enzymes are important for maintaining ROS release at the physiological levels. It has been reported that BoHV-1 infection induces overproduction of ROS and oxidative mitochondrial dysfunction in cell cultures. In this study, we found that chemical interruption of RC complexes by TTFA (an inhibitor of RC complex II), NaN3 (an inhibitor of RC complex IV), and oligomycin A (an inhibitor of ATP synthase) consistently decreased virus productive infection, suggesting that the integral processes of RC complexes are important for the virus replication. The virus infection significantly increased the expression of subunit SDHB (succinate dehydrogenase) and MTCO1 (cytochrome c oxidase subunit I), critical components of RC complexes II and IV, respectively. The expression of antioxidant enzymes including superoxide dismutase 1 (SOD1), SOD2, catalase (CAT), and glutathione peroxidase 4 (GPX4) was differentially affected following the virus infection. The protein TFAM (transcription factor A, mitochondrial) stimulated by either nuclear respiratory factor 1 (NRF1) or NRF2 is a key regulator of mitochondrial biogenesis. Interestingly, the virus infection at the late stage (at 16 h after infection) stimulated TFAM expression but decreased the levels of both NRF1 and NRF2, indicating that virus infection activated TFAM signaling independent of either NRF1 or NRF2. Overall, this study provided evidence that BoHV-1 infection altered the expression of molecules associated with RC complexes, antioxidant enzymes, and mitochondrial biogenesis-related signaling NRF1/NRF2/TFAM, which correlated with the previous report that virus infection induces ROS overproduction and mitochondrial dysfunction.


Assuntos
Antioxidantes/metabolismo , Herpesvirus Bovino 1/patogenicidade , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Western Blotting , Linhagem Celular , Cães , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Oligomicinas/farmacologia , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Azida Sódica/farmacologia , Succinato Desidrogenase/metabolismo , Tenoiltrifluoracetona/farmacologia
9.
J Virol ; 91(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003484

RESUMO

The latency-related (LR) RNA encoded by bovine herpesvirus 1 (BoHV-1) is abundantly expressed in latently infected sensory neurons. Although the LR gene encodes several products, ORF2 appears to mediate important steps during the latency-reactivation cycle because a mutant virus containing stop codons at the amino terminus of ORF2 does not reactivate from latency in calves. We recently found that the Wnt/ß-catenin signaling pathway is regulated during the BoHV-1 latency-reactivation cycle (Y. Liu, M. Hancock, A. Workman, A. Doster, and C. Jones, J Virol 90:3148-3159, 2016). In the present study, a ß-catenin coactivator, high-mobility group AT-hook 1 protein (HMGA1), was detected in significantly more neurons in the trigeminal ganglia of latently infected calves than in those of uninfected calves. Consequently, we hypothesized that HMGA1 cooperates with ORF2 and ß-catenin to maintain latency. In support of this hypothesis, coimmunoprecipitation studies demonstrated that ORF2 stably interacts with a complex containing ß-catenin and/or HMGA1 in transfected mouse neuroblastoma (Neuro-2A) cells. Confocal microscopy provided evidence that ORF2 was relocalized by HMGA1 and ß-catenin in Neuro-2A cells. ORF2 consistently enhanced the ability of HMGA1 to stimulate ß-catenin-dependent transcription, suggesting that interactions between ORF2 and a complex containing ß-catenin and HMGA1 have functional significance. An ORF2 stop codon mutant, an ORF2 nuclear localization mutant, or a mutant lacking the 5 protein kinase A or C phosphorylation sites interfered with its ability to stimulate ß-catenin-dependent transcription. Since the canonical Wnt/ß-catenin signaling pathway promotes neurogenesis (synapse formation and remodeling) and inhibits neurodegeneration, interactions between ORF2, HMGA1, and ß-catenin may be important for certain aspects of the latency-reactivation cycle.IMPORTANCE The lifelong latency of bovine herpesvirus 1 (BoHV-1) requires that significant numbers of infected sensory neurons survive infection and maintain normal functions. Consequently, we hypothesize that viral products expressed during latency cooperate with neuronal factors to maintain latency. Our studies revealed that a ß-catenin coactivator, high-mobility group AT-hook 1 protein (HMGA1), was readily detected in a subset of trigeminal ganglion neurons in latently infected calves but not in uninfected calves. A viral protein (ORF2) expressed in latently infected neurons interacted with ß-catenin and HMGA1 in transfected cells, which resulted in the nuclear localization of ß-catenin. This interaction correlated with the ability of ORF2 to stimulate the coactivator functions of HMGA1. These findings are significant because the canonical Wnt/ß-catenin signaling pathway promotes neurogenesis and inhibits neurodegeneration.


Assuntos
Doenças dos Bovinos/virologia , Proteínas HMGA/fisiologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/fisiologia , Animais , Bovinos , Doenças dos Bovinos/metabolismo , Linhagem Celular Tumoral , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno , Camundongos , Latência Viral , beta Catenina/metabolismo
10.
Vet Res ; 48(1): 45, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28882164

RESUMO

Bovine herpesvirus 1 (BoHV-1) infection enhanced the generation of inflammatory mediator reactive oxidative species (ROS) and stimulated MAPK signaling that are highly possibly related to virus induced inflammation. In this study, for the first time we show that BoHV-1 infection manipulated phospholipase C (PLC) signaling, as demonstrated by the activation of PLCγ-1 at both early stages [at 0.5 h post-infection (hpi)] and late stages (4-12 hpi) during the virus infection of MDBK cells. Viral entry, and de novo protein expression and/or DNA replication were potentially responsible for the activation of PLCγ-1 signaling. PLC signaling inhibitors of both U73122 and edelfosine significantly inhibited BoHV-1 replication in both bovine kidney cells (MDBK) and rabbit skin cells (RS-1) in a dose-dependent manner by affecting the virus entry stage(s). In addition, the activation of Erk1/2 and p38MAPK signaling, and the enhanced generation of ROS by BoHV-1 infection were obviously ameliorated by chemical inhibition of PLC signaling, implying the requirement of PLC signaling in ROS production and these MAPK pathway activation. These results suggest that the activation of PLC signaling is a potential pathogenic mechanism for BoHV-1 infection.


Assuntos
Doenças dos Bovinos/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/fisiologia , Transdução de Sinais/fisiologia , Fosfolipases Tipo C/fisiologia , Animais , Bovinos , Citometria de Fluxo/veterinária , Infecções por Herpesviridae/virologia , Sistema de Sinalização das MAP Quinases/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Replicação Viral
11.
Virus Genes ; 53(2): 233-239, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27866318

RESUMO

In this study, we constructed for the first time a full-length cDNA clone of pig-original bovine viral diarrhea virus 2 (BVDV-2) strain SH-28, modified the cDNA clone (pASH28) for mutant pASHΔNpro and derived virus strain vASHΔNpro by deleting the genomic region encoding the Npro polypeptide, and examined significance of protein Npro for antiviral responses in vitro. Data showed that Npro-deletion mutant virus vASHΔNpro led to significant overexpression of oligo adenylate synthetase (OAS), myxovirus-resistant protein 1 (Mx1), and ubiquitin-like protein 15 (ISG15). Data also revealed that overexpression of Npro, but not NS2 and NS3 proteins, resulted in significant down-regulation of OAS, Mx1, and ISG15 production (p ≤ 0.05) in bovine cells as well as porcine cells transfected with Npro recombinant eukaryotic expression plasmids. Npro (but not NS2 and NS3) was also found to inhibit poly(IC) from inducing production of type I interferon (IFN-I). These results indicated that protein Npro may play multiple roles in regulating antiviral response in host cells interfered by pig BVDV-2 strain, and provided useful information to understand better the mechanism of BVDV-2 persistent infection in pigs.


Assuntos
Vírus da Diarreia Viral Bovina Tipo 2/genética , Proteínas de Resistência a Myxovirus/genética , Infecções por Pestivirus/genética , Proteínas não Estruturais Virais/genética , Animais , Bovinos , Linhagem Celular , Vírus da Diarreia Viral Bovina Tipo 2/patogenicidade , Regulação Viral da Expressão Gênica , Proteínas de Resistência a Myxovirus/biossíntese , Infecções por Pestivirus/virologia , Suínos/virologia , Ubiquitinas/biossíntese , Ubiquitinas/genética , Proteínas não Estruturais Virais/biossíntese
12.
Pak J Pharm Sci ; 30(4): 1357-1362, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29039338

RESUMO

Phragmitesaustralis (P. australis), a worldwide distributed wetland grass, is traditionally used as food-making helper and spice in China. The pharmacological effect of this plant is poorly understood. Here, we demonstrated that lipopolysaccharide (LPS)-induced production of inflammatory mediators nitric oxide (NO) and reactive oxygen species (ROS), and the pro-inflammatory cytokines tumor necrosis factor-a (TNF-a) and interleukin-1ß (IL-1ß) in RAW264.7 macrophage were significantly inhibited by the crude extract. The inflammation pertinent signaling extra cellular signal-regulated kinase 1/2 (Erk1/2), P38MAPK, C-Jun and NF-kappaB (NF-κB) activated by LPS could be dramatically inhibited by this extract. It also remarkably inhibited bovine herpes virus type 1 (BoHV-1) replication in MDBK cells. Taken together, here, for the first time we provided P. australisa a novel natural herb as a potential candidate for the generation of antiviral and anti-inflammatory agent.


Assuntos
Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Extratos Vegetais/farmacologia , Poaceae/química , Replicação Viral/efeitos dos fármacos , Animais , Células Cultivadas , Herpesvirus Bovino 1/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos
13.
Vet Res ; 47: 47, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27000063

RESUMO

The levels of cellular reactive oxygen species (ROS) and ATP as well as the mitochondrial membrane potential (MMP) in response to bovine herpesvirus 1 (BHV-1) infection of MDBK cells were measured, respectively. BHV-1 infection increased ROS production which depended on viral entry, and de novo protein expression and/or DNA replication. Vice versa, excessive ROS was required for efficient viral replication. Levels of both ATP and MMP were significantly decreased after BHV-1 infection. Interestingly, the loss of MMP was ameliorated by ROS depression. Collectively, ROS dependent mitochondrial damage and ultimately disruption of energy metabolism (ATP depletion) are a potential pathogenic mechanism for BHV-1 infection.


Assuntos
Doenças dos Bovinos/metabolismo , Expressão Gênica , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/fisiologia , Rinotraqueíte Infecciosa Bovina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Bovinos , Doenças dos Bovinos/virologia , Replicação do DNA , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Rinotraqueíte Infecciosa Bovina/virologia , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Replicação Viral
14.
Vet Res ; 47(1): 91, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27590675

RESUMO

We have shown previously that BHV-1 infection activates Erk1/2 signaling. Here, we show that BHV-1 provoked an early-stage transient and late-stage sustained activation of JNK, p38MAPK and c-Jun signaling in MDBK cells. C-Jun phosphorylation was dependent on JNK. These early events were partially due to the viral entry process. Unexpectedly, reactive oxygen species were not involved in the later activation phase. Interestingly, only activated JNK facilitated the viral multiplication identified through both chemical inhibitor and siRNA. Collectively, this study provides insight into our understanding of early stages of BHV-1 infection.


Assuntos
Infecções por Herpesviridae/metabolismo , Herpesvirus Bovino 1 , Sistema de Sinalização das MAP Quinases/fisiologia , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Western Blotting , Bovinos , Linhagem Celular , Células Epiteliais/citologia , Herpesvirus Bovino 1/fisiologia , Rim/citologia , Replicação Viral/fisiologia
15.
J Virol ; 88(1): 417-24, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24155396

RESUMO

Host signaling pathways and cellular proteins play important roles in the influenza viral life cycle and can serve as antiviral targets. In this study, we report the engagement of host phosphoinositide-specific phospholipase γ1 (PLC-γ1) in mediating cell entry of influenza virus H1N1 but not H3N2 subtype. Both PLC-γ1-specific inhibitor and short hairpin RNA (shRNA) strongly suppress the replication of H1N1 but not H3N2 viruses in cell culture, suggesting that PLC-γ1 plays an important subtype-specific role in the influenza viral life cycle. Further analyses demonstrate that PLC-γ1 activation is required for viral postbinding cell entry. In addition, H1N1, but not H3N2, infection leads to the phosphorylation of PLC-γ1 at Ser 1248 immediately after infection and independent of viral replication. We have further shown that H1N1-induced PLC-γ1 activation is downstream of epidermal growth factor receptor (EGFR) signaling. Interestingly, both H1N1 and H3N2 infections activate EGFR, but only H1N1 infection leads to PLC-γ1 activation. Taking our findings together, we have identified for the first time the subtype-specific interplay of host PLC-γ1 signaling and H1N1 virus that is critical for viral uptake early in the infection. Our study provides novel insights into how virus interacts with the cellular signaling network by demonstrating that viral determinants can regulate how the host signaling pathways function in virally infected cells.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Fusão de Membrana , Fosfolipase C gama/metabolismo , Transdução de Sinais , Linhagem Celular , Ativação Enzimática , Receptores ErbB/metabolismo , Humanos , RNA Interferente Pequeno/genética , Replicação Viral
16.
Arch Virol ; 160(3): 711-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25559668

RESUMO

In this study, the complete genome of the virulent strain LH of goose parvovirus (GPV) was sequenced and cloned into the pBluescript II (SK) plasmid vector. Sequence alignments of the inverted terminal repeats (ITR) of GPV strains revealed a common 14-nt-pair deletion in the stem of the palindromic structure in the LH strain and three other strains isolated after 1982 when compared to three GPV strains isolated earlier than that time. Transfection of 11-day-old embryonated goose eggs with the plasmid pLH, which contains the entire genome of strain LH, resulted in successful rescue of the infectious virus. Death of embryos after transfection via the chorioallantoic membrane infiltration route occurred earlier than when transfection was done via the allantoic cavity inoculation route. The rescued virus exhibited virulence similar to that of its parental virus, as evaluated by the mortality rate in goslings. Generation of the pathogenic infectious clone provides us with a powerful tool to elucidate the molecular pathogenesis of GPV in the future.


Assuntos
DNA Viral/química , DNA Viral/genética , Genoma Viral , Parvovirus/genética , Parvovirus/patogenicidade , Animais , Sequência de Bases , Clonagem Molecular , Embrião de Mamíferos/virologia , Gansos/virologia , Dados de Sequência Molecular , Parvovirus/crescimento & desenvolvimento , Parvovirus/isolamento & purificação , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sobrevida , Transfecção , Virulência
17.
Vet Microbiol ; 288: 109932, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043447

RESUMO

Bovine herpesvirus 1(BoHV-1) is an important bovine pathogen that causes great economic loss to cattle farms worldwide. The virus-productive infection in bovine kidney (MDBK) cells results in ATP depletion. The mechanisms are not well understood. Mitochondrial fatty acid ß-oxidation (FAO) is an important energy source in many tissues with high energy demand. Since carnitine palmitoyl-transferase 1 A (CPT1A) is the rate-limiting enzyme of FAO, we investigated the interactions between virus-productive infection and CPT1A signaling. Here, we found that virus-productive infection at the later stage significantly decreased CPT1A protein levels in all the detected cells, including MDBK, A549, and Neuro-2A cells, differentially altered the accumulation of CPT1A proteins in the nucleus and cytosol, and re-localized the protein in the nucleus. Etomoxir (ETO), an irreversible inhibitor of CPT1A, inhibited viral replication and partially interfered with the ability of BoHV-1 to alter CPT1A accumulation in the nucleus but not in the cytosol. Furthermore, ETO consistently reduced RNA levels of two viral regulatory proteins (bICP0 and bICP22) and protein expression of virion-associated proteins during productive infection, further supporting the important roles of CPT1A signaling in BoHV-1 productive infection. These data, for the first time, suggest that CPT1A is potentially involved in BoHV-1 productive infection.


Assuntos
Doenças dos Bovinos , Infecções por Herpesviridae , Herpesvirus Bovino 1 , Bovinos , Animais , Herpesvirus Bovino 1/genética , Replicação Viral , Infecções por Herpesviridae/veterinária , Transferases/metabolismo , Carnitina/metabolismo
18.
Arch Virol ; 158(6): 1227-34, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23381397

RESUMO

Phosphatidylinositol-3-kinase (PI3K)/Akt is an important cellular pathway that has been shown to participate in various replication steps of multiple viruses. In the present study, we compared the phosphorylation status of Akt during infection of MARC-145 cells and porcine alveolar macrophages (PAMs) with highly pathogenic PRRSV (HP-PRRSV) strain HuN4. We observed that biphasic activation of Akt was induced in at both the early stage (5, 15 and 30 min postinfection) and the late stage (12 and 24 h postinfection) of HP-PRRSV infection of MARC-145 cells, while an early-phase activation of Akt was found exclusively in virus-infected PAMs in vitro. Analysis with the PI3K-specific inhibitor LY294002 confirmed that PI3K acted as the upstream activator for the virus-induced activation of Akt. UV-irradiation-inactivated virus still induced the early event in PAMs but not in MARC-145 cells, suggesting that different mechanisms are employed for the early-stage induction of phosphorylated Akt within different cell cultures. We further demonstrated that FoxO1 and Bad, which serve as downstream targets of Akt, were phosphorylated in virus-infected MARC-145 cells. Moreover, the suppression of phosphorylated Akt with LY294002 significantly inhibited the virus-induced cytopathic effect (CPE) on MARC-145 cells, but it had a negligible effect on virus propagation. Collectively, our data provide new evidence of a novel role for the PI3K/Akt pathway in PRRSV infection of MARC-145 cells.


Assuntos
Fosfatidilinositol 3-Quinase/fisiologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia , Animais , Western Blotting , Linhagem Celular , Cromonas/farmacologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Suínos/virologia , Ativação Viral/fisiologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
19.
J Basic Microbiol ; 53(1): 1-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22359233

RESUMO

As locomotive organelles, flagella allow bacteria to move toward favorable environments. A flagellum consists of three parts: the basal structure (rotary motor), the hook (universal joint), and the filament (helical propeller). For ages, flagella have been generally regarded as important virulence factors, mainly because of their motility property. However, flagella are getting recognized to play multiple roles with more functions besides motility and chemotaxis. Recent evidence has pinpointed that the bacterial flagella participate in many additional processes including adhesion, biofilm formation, virulence factor secretion, and modulation of the immune system of eukaryotic cells. This mini-review summarizes data from recent studies that elucidated how flagella, as a virulence factor, contribute to bacterial pathogenicity.


Assuntos
Bactérias/patogenicidade , Flagelos/fisiologia , Animais , Bactérias/citologia , Bactérias/ultraestrutura , Infecções Bacterianas/microbiologia , Fenômenos Fisiológicos Bacterianos , Movimento Celular/fisiologia , Humanos , Virulência
20.
Vet Microbiol ; 276: 109626, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36502739

RESUMO

Bovine herpesvirus 1 (BoHV-1) is a significant risk factor for the bovine respiratory disease complex (BRDC), a severe disease causing great economic losses to the cattle industry worldwide. Previous studies have reported that both phospholipase C-γ1 (PLC-γ1) and ß-catenin are activated during BoHV-1 infection for efficient replication. However, the interplay between PLC-γ1 and ß-catenin as a consequence of virus infection remains to be elucidated. Here, we reported that PLC-γ1 interacted with ß-catenin, which was enhanced following virus infection. PLC-γ1-specific inhibitor, U73122, significantly reduced the mRNA levels of ß-catenin in BoHV-1-infected cells; however, the steady-state protein levels were not affected due to the virus infection. Interestingly, the treatment of virus-infected cells with U73122 reduced the accumulation of activated ß-catenin [p-ß-catenin(S552)] in fractions of the cytoplasmic membrane as that observed with the treatment of methyl-ß-cyclodextrin (MßCD), which can disrupt cytoplasmic membrane structure via sequestering cholesterol. Nucleus accumulation of p-ß-catenin(S552) was increased following U73122 treatment in virus-infected cells. In addition, the association of p-ß-catenin(S552) with cytoplasmic membrane induced by the virus infection was significantly disrupted by the treatment of U73122 and MßCD. These data indicated that the PLC-γ1 signaling is potentially involved in the regulation of ß-catenin signaling stimulated by BoHV-1 infection partially via affecting the subcellular localization of p-ß-catenin(S552).


Assuntos
Doenças dos Bovinos , Infecções por Herpesviridae , Herpesvirus Bovino 1 , Bovinos , Animais , beta Catenina/metabolismo , Herpesvirus Bovino 1/fisiologia , Transdução de Sinais , Membrana Celular , Infecções por Herpesviridae/veterinária , Fosfolipases Tipo C/metabolismo , Fosfolipase C gama/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA