Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 13: 1033471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439093

RESUMO

Probiotics can maintain or improve health by modulating the response of immune cells in the gastrointestinal tract. However, the mechanisms by which probiotics promote macrophage (Mφ) activity are poorly understood. Here, we evaluated exosomes derived from intestinal epithelial cells treated with Bacillus amyloliquefaciens SC06 (Ba) and investigated the regulation of Mφ phagocytosis, apoptosis, and polarization. We isolated two exosomes from intestinal porcine epithelial cell lines (IPEC-J2) with or without Ba-treatment, named Ba-Exo and Exo, respectively. They had typical sizes and a cup-shaped morphology, and their surfaces presented typical exosomes-associated proteins, including CD63, ALIX, and TSG101. Ba-Exo and Exo could entrer Mφ (3D4/21 cells) effectively. Moreover, an in vitro phagocytosis assay demonstrated that Ba-Exo can promote phagocytosis of Mφ. Similar to Exo, Ba-Exo had no effect on Mφ apoptosis. Furthermore, Ba-Exo significantly increased inducible nitric oxide synthase (iNOS), declined the expression of arginase 1 (Arg1) in Mφ, and stimulated Mφ polarization to M1. To explore the differences in the regulation of Mφ polarization between Ba-Exo and Exo, we performed reverse transcription quantitative polymerase chain reaction analysis of the small RNAs and found that miR-222 increased in the Ba-Exo group compared to that in the Exo group. These results provide a new perspective on the relationship between probiotics and intestinal immunity.


Assuntos
Bacillus amyloliquefaciens , Exossomos , Probióticos , Suínos , Animais , Exossomos/metabolismo , Macrófagos , Ativação de Macrófagos , Probióticos/farmacologia
2.
Drug Deliv Transl Res ; 9(1): 394-403, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30136122

RESUMO

Alzheimer's disease (AD) is currently incurable and places a large burden on the caregivers of AD patients. In the AD brain, iron is abundant, catalyzing free radicals and impairing neurons. The blood-brain barrier hampers antidementia drug delivery via circulation to the brain, which limits the therapeutic effects of drugs. Here, according to the method described by Gobinda, we synthesized a 16 lysine (K) residue-linked low-density lipoprotein receptor-related protein (LRP)-binding amino acid segment of apolipoprotein E (K16APoE). By mixing this protein with our designed therapeutic peptide HAYED, we successfully transported HAYED into an AD model mouse brain, and the peptide scavenged excess iron and radicals and decreased the necrosis of neurons, thus easing AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Apolipoproteínas E/química , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Peptídeos/administração & dosagem , Animais , Apolipoproteínas E/metabolismo , Transporte Biológico , Barreira Hematoencefálica/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Ferro/química , Camundongos , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA