RESUMO
Despite numerous studies demonstrate that genetics and epigenetics factors play important roles on smoking behavior, our understanding of their functional relevance and coordinated regulation remains largely unknown. Here we present a multiomics study on smoking behavior for Chinese smoker population with the goal of not only identifying smoking-associated functional variants but also deciphering the pathogenesis and mechanism underlying smoking behavior in this under-studied ethnic population. After whole-genome sequencing analysis of 1329 Chinese Han male samples in discovery phase and OpenArray analysis of 3744 samples in replication phase, we discovered that three novel variants located near FOXP1 (rs7635815), and between DGCR6 and PRODH (rs796774020), and in ARVCF (rs148582811) were significantly associated with smoking behavior. Subsequently cis-mQTL and cis-eQTL analysis indicated that these variants correlated significantly with the differential methylation regions (DMRs) or differential expressed genes (DEGs) located in the regions where these variants present. Finally, our in silico multiomics analysis revealed several hub genes, like DRD2, PTPRD, FOXP1, COMT, CTNNAP2, to be synergistic regulated each other in the etiology of smoking.
RESUMO
INTRODUCTION: Smoking (nicotine) has been reported to possibly be neuroprotective and conducive to patients with early Parkinson's disease (PD). However, the causal effect of smoking on PD and the molecular mechanisms of smoking-related genes (SRGs) are vague. METHODS: First, genome-wide association study summary data on smoking (ukb-b-6244) and PD (ieu-b-7) were retrieved from the Integrative Epidemiology Unit OpenGWAS database for Mendelian randomization (MR) analysis. Sensitivity analyses were performed to validate the results of the MR analyses. Subsequently, a differential analysis of PD patients and controls was performed to identify differentially expressed SRGs (DE-SRGs). Finally, the expression of DE-SRGs was analyzed in annotated cell types. RESULTS: The MR analysis revealed that smoking was a protective factor causally related to PD (P=0.008, odds ratio=0.288). Furthermore, a total of five DE-SRGs enriched in Toll-like receptor signaling pathways were identified in GSE7621 dataset. Regarding single-cell analysis of GSE184950 dataset, a total of nine cell types were annotated. The expression of LRRN1 in oligodendrocyte progenitor cells and oligodendrocytes, respectively, differed significantly between PD patients and controls. CONCLUSIONS: Our study supported a causal relationship between smoking and PD and found that five SRGs (MAPK8IP1, LRRN1, LINC00324, HIST1H2BK, and YOD1) enriched in Toll-like receptor signaling pathways might be beneficial in PD. In addition, single-cell sequencing indicated that four SRGs were differentially expressed in different cell types. All four genes except MAPK8IP1 were significantly correlated with the 10 genes calculated by scPagwas. Thus, this evidence provides a theoretical basis for further research on the effect of nicotine (smoking) on PD. IMPLICATIONS: In order to explore the potential etiology and pathogenesis of Parkinson's disease, this study combined Mendelian randomization, transcriptomics and single-cell sequencing analysis to explore the association between exposure factors and Parkinson's disease, observe and confirm the relationship and mechanism between the two from the perspective of genetics, and provide more reliable evidence for causal inference.
RESUMO
Introduction: Nicotine degradation is a new strategy to block nicotine-induced pathology. The potential of human microbiota to degrade nicotine has not been explored. Aims: This study aimed to uncover the genomic potentials of human microbiota to degrade nicotine. Methods: To address this issue, we performed a systematic annotation of Nicotine-Degrading Enzymes (NDEs) from genomes and metagenomes of human microbiota. A total of 26,295 genomes and 1,596 metagenomes for human microbiota were downloaded from public databases and five types of NDEs were annotated with a custom pipeline. We found 959 NdhB, 785 NdhL, 987 NicX, three NicA1, and three NicA2 homologs. Results: Genomic classification revealed that six phylum-level taxa, including Proteobacteria, Firmicutes, Firmicutes_A, Bacteroidota, Actinobacteriota, and Chloroflexota, can produce NDEs, with Proteobacteria encoding all five types of NDEs studied. Analysis of NicX prevalence revealed differences among body sites. NicX homologs were found in gut and oral samples with a high prevalence but not found in lung samples. NicX was found in samples from both smokers and non-smokers, though the prevalence might be different. Conclusion: This study represents the first systematic investigation of NDEs from the human microbiota, providing new insights into the physiology and ecological functions of human microbiota and shedding new light on the development of nicotine-degrading probiotics for the treatment of smoking-related diseases.
RESUMO
Neural progenitor cells (NPCs) are essential for in vitro drug screening and cell-based therapies for brain-related disorders, necessitating well-defined and reproducible culture systems. Current strategies employing protein growth factors pose challenges in terms of both reproducibility and cost. In this study, we developed a novel DNA-based modulator to regulate FGFR signaling in NPCs, thereby facilitating the long-term maintenance of stemness and promoting neurogenesis. This DNA-based FGFR-agonist effectively stimulated FGFR1 phosphorylation and activated the downstream ERK signaling pathway in human embryonic stem cell (HESC)-derived NPCs. We replaced the basic fibroblast growth factor (bFGF) in the culture medium with our DNA-based FGFR-agonist to artificially modulate FGFR signaling in NPCs. Utilizing a combination of cell experiments and bioinformatics analyses, we showed that our FGFR-agonist could enhance NPC proliferation, direct migration, and promote neurosphere formation, thus mimicking the functions of bFGF. Notably, transcriptomic analysis indicated that the FGFR-agonist could specifically influence the transcriptional program associated with stemness while maintaining the neuronal differentiation program, closely resembling the effects of bFGF. Furthermore, our culture conditions allowed for the successful propagation of NPCs through over 50 passages while retaining their ability to efficiently differentiate into neurons. Collectively, our approach offers a highly effective method for expanding NPCs, thereby providing new avenues for disease-in-dish research and drug screening aimed at combating neural degeneration.
Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Neurais , Humanos , Reprodutibilidade dos Testes , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , DNA/metabolismo , DNA/farmacologia , Diferenciação Celular , Células CultivadasRESUMO
Bat flight poses intriguing questions about how flight independently developed in mammals. Flight is among the most energy-consuming activities. Thus, we deduced that changes in energy metabolism must be a primary factor in the origin of flight in bats. The respiratory chain of the mitochondrial produces 95% of the adenosine triphosphate (ATP) needed for locomotion. Because the respiratory chain has a dual genetic foundation, with genes encoded by both the mitochondrial and nuclear genomes, we examined both genomes to gain insights into the evolution of flight within mammals. Evidence for positive selection was detected in 23.08% of the mitochondrial-encoded and 4.90% of nuclear-encoded oxidative phosphorylation (OXPHOS) genes, but in only 2.25% of the nuclear-encoded nonrespiratory genes that function in mitochondria or 1.005% of other nuclear genes in bats. To address the caveat that the two available bat genomes are of only draft quality, we resequenced 77 OXPHOS genes from four species of bats. The analysis of the resequenced gene data are in agreement with our conclusion that a significantly higher proportion of genes involved in energy metabolism, compared with background genes, show evidence of adaptive evolution specific on the common ancestral bat lineage. Both mitochondrial and nuclear-encoded OXPHOS genes display evidence of adaptive evolution along the common ancestral branch of bats, supporting our hypothesis that genes involved in energy metabolism were targets of natural selection and allowed adaptation to the huge change in energy demand that were required during the origin of flight.
Assuntos
Adaptação Fisiológica/genética , Quirópteros/genética , Quirópteros/fisiologia , Metabolismo Energético/genética , Evolução Molecular , Voo Animal/fisiologia , Animais , Humanos , Dados de Sequência Molecular , Filogenia , Roedores/genética , Seleção GenéticaRESUMO
Backgrounds: Tobacco smoking is an important risk factor for coronary artery disease (CAD), but the genetic mechanisms linking smoking to CAD remain largely unknown. Methods: We analyzed summary data from the genome-wide association study (GWAS) of the UK Biobank for CAD, plasma lipid concentrations (n = 184,305), and smoking (n = 337,030) using different biostatistical methods, which included LD score regression and Mendelian randomization (MR). Results: We identified SNPs shared by CAD and at least one smoking behavior, the genes where these SNPs are located were found to be significantly enriched in the processes related to lipoprotein metabolic, chylomicron-mediated lipid transport, lipid digestion, mobilization, and transport. The MR analysis revealed a positive correlation between smoking cessation and decreased risk for CAD when smoking cessation was considered as exposure (p = 0.001), and a negative correlation between the increased risk for CAD and smoking cessation when CAD was considered as exposure (p = 2.95E-08). This analysis further indicated that genetic liability for smoking cessation increased the risk of CAD. Conclusion: These findings inform the concomitant conditions of CAD and smoking and support the idea that genetic liabilities for smoking behaviors are strongly associated with the risk of CAD.
RESUMO
Background: Previous epidemiological studies have reported controversial results on the relationship between smoking and Alzheimer's disease (AD). Therefore, we sought to assess the association using Mendelian randomization (MR) analysis. Methods: We used single nucleotide polymorphisms (SNPs) associated with smoking quantity (cigarettes per day, CPD) from genome-wide association studies (GWAS) of Japanese population as instrumental variables, then we performed two-sample MR analysis to investigate the association between smoking and AD in a Chinese cohort (1,000 AD cases and 500 controls) and a Japanese cohort (3,962 AD cases and 4,074 controls), respectively. Results: Genetically higher smoking quantity showed no statistical causal association with AD risk (the inverse variance weighted (IVW) estimate in the Chinese cohort: odds ratio (OR) = 0.510, 95% confidence interval (CI) = 0.149-1.744, p = 0.284; IVW estimate in the Japanese cohort: OR = 1.170, 95% confidence interval CI = 0.790-1.734, p = 0.434). Conclusion: This MR study, for the first time in Chinese and Japanese populations, found no significant association between smoking and AD.
RESUMO
BACKGROUND: Smoking behavior is influenced by multiple genes, including the bitter taste gene TAS2R38. It has been reported that the correlation between TAS2R38 and smoking behavior has ethnicity-based differences. However, the TAS2R38 status in Chinese smokers is still unclear. OBJECTIVE: This study aims to investigate the possible relationship between genetic variations in TAS2R38 (A49P, V262A and I296V) and smoking behaviors in the Han Chinese population. METHODS: The haplotype analyses were performed and smoking behavior questionnaire was completed by 1271 individuals. Genetic association analyses for smoking behavior were analyzed using chi-square test. Further, for investigating the molecular mechanism of TAS2R38 variants effect on smoking behavior, we conducted TAS2R38-PAV and TAS2R38-AVI expression plasmids and tested the cellular calcium assay by cigarette smoke compounds stimulus in HEK293. RESULTS: Significant associations of genetic variants within TAS2R38 were identified with smoking behavior. We found a higher PAV/PAV frequency than AVI/AVI in moderate and high nicotine dependence (FTND ≥ 4; X2 = 4.611, 1 df, p = 0.032) and strong cigarette smoke flavor intensity preference (X2 = 4.5383, 1 df, p = 0.033) in participants. Furthermore, in the in vitro cellular calcium assay, total particle matter (TPM), N-formylnornicotine and cotinine, existing in cigarette smoke, activated TAS2R38-PAV but not TAS2R38-AVI-transfected cells. CONCLUSION: Our data highlights that genetic variations in TAS2R38 are related to smoking behavior, especially nicotine dependence and cigarette smoke flavor intensity preference. Our findings may encourage further consideration of the taste process to identify individuals susceptible to nicotine dependence, particularly Han Chinese smokers.
Assuntos
Fumar Cigarros , Tabagismo , Cálcio , China , Cotinina , Variação Genética , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/genética , Fumantes , Paladar/genéticaRESUMO
Pheromones are chemical cues released and sensed by individuals of the same species, which are of major importance in regulating reproductive and social behaviors of mammals. Generally, they are detected by the vomeronasal system (VNS). Here, we first investigated and compared an essential genetic component of vomeronasal chemoreception, that is, TRPC2 gene, of four marine mammals varying the degree of aquatic specialization and related terrestrial species in order to provide insights into the evolution of pheromonal olfaction in the mammalian transition from land to water. Our results based on sequence characterizations and evolutionary analyses, for the first time, show the evidence for the ancestral impairment of vomeronasal pheromone signal transduction pathway in fully aquatic cetaceans, supporting a reduced or absent dependence on olfaction as a result of the complete adaptation to the marine habitat, whereas the amphibious California sea lion was found to have a putatively functional TRPC2 gene, which is still under strong selective pressures, reflecting the reliance of terrestrial environment on chemical recognition among the semiadapted marine mammals. Interestingly, our study found that, unlike that of the California sea lion, TRPC2 genes of the harbor seal and the river otter, both of which are also semiaquatic, are pseudogenes. Our data suggest that other unknown selective pressures or sensory modalities might have promoted the independent absence of a functional VNS in these two species. In this respect, the evolution of pheromonal olfaction in marine mammals appears to be more complex and confusing than has been previously thought. Our study makes a useful contribution to the current understanding of the evolution of pheromone perception of mammals in response to selective pressures from an aquatic environment.
Assuntos
Evolução Biológica , Mamíferos/genética , Feromônios/fisiologia , Olfato/fisiologia , Canais de Cátion TRPC/genética , Órgão Vomeronasal , Sequência de Aminoácidos , Animais , Genoma , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Canais de Cátion TRPC/classificaçãoRESUMO
BACKGROUND: Taste preference varies geographically in China. However, studies on Chinese people's taste preference in different regions of China are limited, and are lack of research on the mechanism of differences in taste preference, especially in genetics. OBJECTIVE: This study aims to investigate the characteristics of taste preference of Chinese men, and estimate whether diverse taste preference in Chinese have genetic underpinning. METHODS: We conducted a questionnaire survey on taste preferences on 1076 males from 10 regions of China, and collected another 1427 males from the same regions which genotyped by microarray. We compared the correlation between different taste preference, and evaluated the correlation between the mutation frequency of inhouse database and different taste preference. The putative taste-preference-related genes were further utilized to estimate the candidate relationship on gene and gene network in different taste preference. RESULTS: There was a correlation between different taste preferences in Chinese men. We found 31 SNPs associated with 6 kind of taste preferences. These SNPs located within or nearby 36 genes, and the tastes associated with 4 of these genes (TRPV1, AGT, ASIC2 and GLP1R) are consistent with the previous studies. Moreover, in different tastes which were suggested to be associated with each other, some putative related genes were the same or in the same gene network, such as pathways related with blood pressure, response to stimulus and nervous system. CONCLUSIONS: This study indicates that the diverse taste preference of Chinese men may have genetic underpinning.
Assuntos
Estudos de Associação Genética , Nutrigenômica , Percepção Gustatória/genética , Paladar/genética , Canais Iônicos Sensíveis a Ácido/genética , Adulto , Angiotensinogênio/genética , China/epidemiologia , Genótipo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Canais de Cátion TRPV/genética , Adulto JovemRESUMO
Tobacco use is one of the leading causes of preventable disease worldwide. Genetic studies have elucidated numerous smoking-associated risk loci in American and European populations. However, genetic determinants for cigarette smoking in Chinese populations are under investigated. In this study, a whole-genome sequencing (WGS)-based genome-wide association study (GWAS) was performed in a Chinese Han population comprising 620 smokers and 564 nonsmokers. Thirteen single-nucleotide polymorphisms (SNPs) of the raftlin lipid linker 1 (RFTN1) gene achieved genome-wide significance levels (P < 5 x 10-8) for smoking initiation. The rs139753473 from RFTN1 and six other suggestively significant loci from CUB and sushi multiple domains 1 (CSMD1) gene were also associated with cigarettes per day (CPD) in an independent Chinese sample consisting of 1,329 subjects (805 smokers and 524 nonsmokers). When treating males separately, associations between smoking initiation and PCAT5/ANKRD30A, two genes involved in cancer development, were identified and replicated. Within RFTN1, two haplotypes (i.e., C-A-C-G and A-G-T-C) formed by rs796812630-rs796584733-rs796349027-rs879511366 and three haplotypes (i.e., T-T-C-C-C, T-T-A-T-T, and C-A-A-T-T) formed by rs879401109-rs879453873-rs75180423-rs541378415-rs796757175 were strongly associated with smoking initiation. In addition, we also revealed two haplotypes (i.e., C-A-G-G and T-C-T-T derived from rs4875371-rs4875372-rs17070935-rs11991366) in the CSMD1 gene showing a significant association with smoking initiation. Further bioinformatics functional assessment suggested that RFTN1 may participate in smoking behavior through modulating immune responses or interactions with the glucocorticoid receptor alpha and the androgen receptor. Together, our results may help understand the mechanisms underlying smoking behavior in the Chinese Han population.
RESUMO
Size of the vomeronasal type 1 receptor (V1R) gene repertoire may be a good indicator for examining the relationship between animal genomes and their environmental niche specialization, especially the relationship between ecological factors and the molecular evolutionary history of the sensory system. Recently, Young et al. (Young JM, Massa HF, Hsu L, Trask BJ. 2009. Extreme variability among mammalian V1R gene families. Genome Res.) concluded that no single ecological factor could explain the extreme variability of the V1R gene repertoire in mammalian genomes. In contrast, we found a significant positive correlation between the size and percentage of intact V1R genes in 32 species that represent the phylogenetic diversity of terricolous mammals and two ecological factors: spatial activity and rhythm activity. Nest-living species possessed a greater number of intact V1R genes than open-living species, and nocturnal terricolous mammals tended to possess more intact V1R genes than did diurnal species. Moreover, our analysis reveals that the evolutionary mechanisms underlying these observations likely resulted from the rapid gene birth and accelerated amino acid substitutions in nest-living and nocturnal mammals, likely a functional requirement for exploiting narrow, dark environments. Taken together, these results reveal how adaptation to divergent circadian rhythms and spatial activity were manifested at the genomic scale. Size of the V1R gene family might have indicated how this gene family adapts to ecological factors.
Assuntos
Evolução Molecular , Mamíferos/genética , Receptores Odorantes/genética , Substituição de Aminoácidos , Animais , Comportamento Animal , Ritmo Circadiano , Ecossistema , Mamíferos/classificação , Mamíferos/fisiologia , Modelos Genéticos , Família Multigênica , Filogenia , Seleção Genética , Especificidade da Espécie , Órgão Vomeronasal/fisiologiaRESUMO
Poly(vinyl alcohol) (PVA) hydrogels prepared by a freeze-thawing procedure were evaluated as matrices for the release of water-insoluble drugs such as dexamethasone. As it is impossible to directly entrap a lipophilic drug into a hydrophilic matrix, a novel mechanism has been designed based on producing biodegradable nanoparticles loaded with the drug, that could then be entrapped into the hydrogels. Nanoparticles were prepared by a solvent evaporation technique using a biodegradable copolymer of poly(lactic acid)-poly(glycolic acid) (PLGA). The effects of several processing parameters on particle properties were investigated. The drug release from free nanoparticles was compared to that from the nanoparticles entrapped into the PVA matrices. It was observed that the release profile of the drug is not significantly affected by the PVA matrix. A correlation was found between the amount of drug released and the PVA concentration in the hydrogels: the percentage of drug released, as a function of time, decreased by increasing PVA concentration, indicating that PVA concentration can be used as a tool in modulating the release of the drug.
RESUMO
Biodegradable hydrophilic gelatin nanoparticles, containing different initial amounts of methotrexate (MTX), were prepared using a simple solvent evaporation technique based on a single water-in-oil emulsion and stabilized by the use of glutaraldehyde as cross-linking agent. The effects of several parameters on particle size, drug encapsulation efficiency and drug release were investigated. Size and shape of the nanoparticles were examined by scanning electron microscopy. The release of MTX was monitored in vitro and the mechanism of release was studied. Particles with a mean diameter of 100-200 nm were produced, which were able to release MTX following a diffusion-controlled mechanism of release. It was observed that the initial amount of MTX used for sample loading did not have any effect on the pattern of release, while it affected the amount of drug entrapped into the nanoparticles and also both the release rate and the total amount of drug released.
RESUMO
Hydrogels based on blends of poly(vinyl alcohol) (PVA) with dextran were prepared by a physical cross-linking procedure and used as matrices for the entrapment of biodegradable nanoparticles loaded with dexamethasone. The nanoparticles were prepared, by a solvent evaporation technique, using biodegradable copolymers of poly(lactic acid)-poly(glycolic acid) (PLGA). Size, morphology and surface characteristics of the nanoparticles were evaluated by scanning electron microscopy. The mechanism of drug release from the nanoparticles entrapped into the PVA-based matrices was studied and compared to that from free nanoparticles. The effect of dextran on the in vitro release profile of dexamethasone from the hydrogels was investigated. The obtained results indicate that PLGA nanoparticles are able to release dexamethasone following a diffusion-controlled mechanism. The entrapment of the nanoparticles into the hydrogels affects only slightly this mechanism of drug release. In addition, dextran/PVA hydrogels release a higher amount of drug with respect to pure PVA hydrogels and by increasing dextran content in the hydrogels, the amount of drug released increases.