Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Hum Genet ; 97(2): 311-8, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26166481

RESUMO

KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed unaffected in mutant cells, we observed an abnormal extended pattern of CEP290, a centriolar satellite protein previously associated with ciliopathies. Our data show the crucial role of KIAA0586 in human primary ciliogenesis and subsequent abnormal hedgehog signaling through abnormal GLI3 processing. Our results thus establish that KIAA0586 mutations cause lethal ciliopathies.


Assuntos
Proteínas de Ciclo Celular/genética , Transtornos da Motilidade Ciliar/genética , Códon sem Sentido/genética , Deformidades Congênitas da Mão/genética , Cardiopatias Congênitas/genética , Hidrocefalia/genética , Fenótipo , Síndrome de Costela Curta e Polidactilia/genética , Sequência de Bases , Transtornos da Motilidade Ciliar/patologia , Europa Oriental , Evolução Fatal , Efeito Fundador , Humanos , Funções Verossimilhança , Dados de Sequência Molecular , Linhagem , Análise de Sequência de DNA
2.
J Hum Genet ; 63(11): 1189-1193, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30181650

RESUMO

Heterozygous disruptions in FOXP1 are responsible for developmental delay, intellectual disability and speech deficit. Heterozygous germline PTCH1 disease-causing variants cause Gorlin syndrome. We describe a girl with extreme megalencephaly, developmental delay and severe intellectual disability. Dysmorphic features included prominent forehead, frontal hair upsweep, flat, wide nasal bridge, low-set, abnormally modelled ears and post-axial cutaneous appendages on the hands. Brain MRI showed partial agenesis of the corpus callosum and widely separated leaves of the septum pellucidum. Exome sequencing of a gene set representing a total of 4813 genes with known relationships to human diseases revealed an already known heterozygous de novo nonsense disease-causing variant in FOXP1 (c.1573C>T, p.Arg525Ter) and a heterozygous novel de novo frameshift nonsense variant in PTCH1 (c.2834delGinsAGATGTTGTGGACCC, p.Arg945GlnfsTer22). The composite phenotype of the patient seems to be the result of two monogenic diseases, although more severe than described in conditions due to disease-causing variants in either gene.


Assuntos
Agenesia do Corpo Caloso/genética , Fatores de Transcrição Forkhead/genética , Deficiência Intelectual/genética , Megalencefalia/genética , Mutação , Receptor Patched-1/genética , Proteínas Repressoras/genética , Agenesia do Corpo Caloso/patologia , Criança , Feminino , Humanos , Deficiência Intelectual/patologia , Megalencefalia/patologia
3.
Brain ; 140(10): 2610-2622, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28969385

RESUMO

Mutations of genes within the phosphatidylinositol-3-kinase (PI3K)-AKT-MTOR pathway are well known causes of brain overgrowth (megalencephaly) as well as segmental cortical dysplasia (such as hemimegalencephaly, focal cortical dysplasia and polymicrogyria). Mutations of the AKT3 gene have been reported in a few individuals with brain malformations, to date. Therefore, our understanding regarding the clinical and molecular spectrum associated with mutations of this critical gene is limited, with no clear genotype-phenotype correlations. We sought to further delineate this spectrum, study levels of mosaicism and identify genotype-phenotype correlations of AKT3-related disorders. We performed targeted sequencing of AKT3 on individuals with these phenotypes by molecular inversion probes and/or Sanger sequencing to determine the type and level of mosaicism of mutations. We analysed all clinical and brain imaging data of mutation-positive individuals including neuropathological analysis in one instance. We performed ex vivo kinase assays on AKT3 engineered with the patient mutations and examined the phospholipid binding profile of pleckstrin homology domain localizing mutations. We identified 14 new individuals with AKT3 mutations with several phenotypes dependent on the type of mutation and level of mosaicism. Our comprehensive clinical characterization, and review of all previously published patients, broadly segregates individuals with AKT3 mutations into two groups: patients with highly asymmetric cortical dysplasia caused by the common p.E17K mutation, and patients with constitutional AKT3 mutations exhibiting more variable phenotypes including bilateral cortical malformations, polymicrogyria, periventricular nodular heterotopia and diffuse megalencephaly without cortical dysplasia. All mutations increased kinase activity, and pleckstrin homology domain mutants exhibited enhanced phospholipid binding. Overall, our study shows that activating mutations of the critical AKT3 gene are associated with a wide spectrum of brain involvement ranging from focal or segmental brain malformations (such as hemimegalencephaly and polymicrogyria) predominantly due to mosaic AKT3 mutations, to diffuse bilateral cortical malformations, megalencephaly and heterotopia due to constitutional AKT3 mutations. We also provide the first detailed neuropathological examination of a child with extreme megalencephaly due to a constitutional AKT3 mutation. This child has one of the largest documented paediatric brain sizes, to our knowledge. Finally, our data show that constitutional AKT3 mutations are associated with megalencephaly, with or without autism, similar to PTEN-related disorders. Recognition of this broad clinical and molecular spectrum of AKT3 mutations is important for providing early diagnosis and appropriate management of affected individuals, and will facilitate targeted design of future human clinical trials using PI3K-AKT pathway inhibitors.


Assuntos
Deficiências do Desenvolvimento/genética , Megalencefalia/genética , Mutação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Encéfalo/diagnóstico por imagem , Criança , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/patologia , Feminino , Estudos de Associação Genética , Células HEK293 , Humanos , Imunoprecipitação , Imageamento por Ressonância Magnética , Masculino , Megalencefalia/diagnóstico por imagem , Megalencefalia/patologia , Mutagênese Sítio-Dirigida/métodos , Fosfatidilinositóis/metabolismo , Transfecção
4.
J Pediatr Genet ; 10(2): 159-163, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33996189

RESUMO

Microlissencephaly is a brain malformation characterized by microcephaly and extremely simplified gyral pattern. It may be associated with corpus callosum agenesis and pontocerebellar hypoplasia. In this case report, we described two siblings, a boy and a girl, with this complex brain malformation and lack of any development. In the girl, exome sequencing of a gene set representing 4,813 genes revealed a homozygous AG deletion in exon 7 of the WDR81 gene, leading to a frameshift (c.4668_4669delAG, p.Gly1557AspfsTer16). The parents were heterozygous for this mutation. The boy died without proper genetic testing. Our findings expand the phenotypic and genotypic spectrum of WDR81 gene mutations.

5.
J Appl Genet ; 60(2): 151-162, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30706430

RESUMO

Autosomal recessive primary microcephaly (MCPH) is a group of rare neurodevelopmental diseases with severe microcephaly at birth. One type of the disorder, MCPH2, is caused by biallelic mutations in the WDR62 gene, which encodes the WD repeat-containing protein 62. Patients with WDR62 mutation may have a wide range of malformations of cortical development in addition to congenital microcephaly. We describe two patients, a boy and a girl, with severe congenital microcephaly, global developmental delay, epilepsy, and failure to thrive. MRI showed hemispherical asymmetry, diffuse pachygyria, thick gray matter, indistinct gray-white matter junction, and corpus callosum and white matter hypoplasia. Whole exome sequencing revealed the same novel homozygous missense mutation, c.668T>C, p.Phe223Ser in exon 6 of the WDR62 gene. The healthy parents were heterozygous for this mutation. The mutation affects a highly conserved region in one of the WD repeats of the WDR62 protein. Haplotype analysis showed genetic relatedness between the families of the patients. Our findings expand the spectrum of mutations randomly distributed in the WDR62 gene. A review is also provided of the brain malformations described in WDR62 mutations in association with congenital microcephaly.


Assuntos
Deficiências do Desenvolvimento/genética , Microcefalia/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Ciclo Celular , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Haplótipos , Homozigoto , Humanos , Masculino , Microcefalia/diagnóstico por imagem , Microcefalia/fisiopatologia , Mutação de Sentido Incorreto/genética , Linhagem , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
6.
Case Rep Genet ; 2016: 2501741, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26955491

RESUMO

A 10-year-old boy was referred with developmental delay and dysmorphism. Genomewide aCGH microarray analysis detected a de novo 3.7 Mb deletion at 1q32.1: arr 1q32.1(199,985,888-203,690,832)x1 dn [build HG19]. This first report of a deletion in this region implies a critical role for dosage-sensitive genes within 1q32.1 in neurological development. This is consistent with previously reported duplications of this region in patients with a similar phenotype.

7.
Case Rep Neurol ; 4(3): 248-53, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23341816

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a devastating autosomal recessive disorder due to mutations in TYMP, which cause loss of function of thymidine phosphorylase (TP), nucleoside accumulation in plasma and tissues and mitochondrial dysfunction. The clinical picture includes progressive gastrointestinal dysmotility, cachexia, ptosis and ophthalmoparesis, peripheral neuropathy and diffuse leukoencephalopathy, which usually lead to death in early adulthood. Therapeutic options are currently available in clinical practice (allogeneic hematopoietic stem cell transplantation and carrier erythrocyte entrapped TP therapy) and newer, promising therapies are expected in the near future. However, successful treatment is strictly related to early diagnosis. We report on an incomplete MNGIE phenotype in a young man harboring the novel heterozygote c.199 C>T (Q67X) mutation in exon 2, and the previously reported c.866 A>C (E289A) mutation in exon 7 in TYMP. The correct diagnosis was achieved many years after the onset of symptoms and unfortunately, the patient died soon after diagnosis because of multiorgan failure due to severe malnutrition and cachexia before any therapeutic option could be tried. To date, early diagnosis is essential to ensure that patients have the opportunity to be treated. MNGIE should be suspected in all patients who present with both gastrointestinal and nervous system involvement, even if the classical complete phenotype is lacking.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA