Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 31(23): 6128-6140, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-33728719

RESUMO

Many organisms are capable of growing faster than they do. Restrained growth rate has functionally been explained by negative effects on lifespan of accelerated growth. However, the underlying mechanisms remain elusive. Telomere attrition has been proposed as a causal agent and has been mostly studied in endothermic vertebrates. We established that telomeres exist as chromosomal-ends in a model insect, the field cricket Gryllus campestris, using terminal restriction fragment and Bal 31 methods. Telomeres comprised TTAGGn repeats of 38 kb on average, more than four times longer than the telomeres of human infants. Bal 31 assays confirmed that telomeric repeats were located at the chromosome-ends. We tested whether rapid growth between day 1, day 65, day 85, and day 125 is achieved at the expense of telomere length by comparing nymphs reared at 23°C with their siblings reared at 28°C, which grew three times faster in the initial 65 days. Surprisingly, neither temperature treatment nor age affected average telomere length. Concomitantly, the broad sense heritability of telomere length was remarkably high at ~100%. Despite high heritability, the evolvability (a mean-standardized measure of genetic variance) was low relative to that of body mass. We discuss our findings in the context of telomere evolution. Some important features of vertebrate telomere biology are evident in an insect species dating back to the Triassic. The apparent lack of an effect of growth rate on telomere length is puzzling, suggesting strong telomere length maintenance during the growth phase. Whether such maintenance of telomere length is adaptive remains elusive and requires further study investigating the links with fitness in the wild.


Assuntos
Gryllidae , Animais , Lactente , Humanos , Gryllidae/genética , Temperatura , Homeostase do Telômero , Longevidade , Telômero/genética
2.
J Exp Biol ; 221(Pt 15)2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29950447

RESUMO

High growth rate is associated with a short lifespan, but the physiological basis for this trade-off is not well known. Telomere length predicts individual lifespan and in this study we investigated whether embryonic growth rate, manipulated using incubation temperature, affects erythrocyte telomere length in a wild bird species, the common tern (Sterna hirundo). A 1°C lower incubation temperature decreased growth rate by 5%, without affecting size at hatching. The slower growth was associated with an average telomere length that was 147 base pairs longer at hatching. If carried through to adulthood, this effect would correspond with an approximately 3 year longer lifespan. Our results thus suggest that an effect of growth rate on lifespan may be mediated by telomere dynamics or a physiological process reflected by telomere length.


Assuntos
Charadriiformes/embriologia , Desenvolvimento Embrionário/fisiologia , Encurtamento do Telômero , Animais , Telômero , Temperatura
3.
R Soc Open Sci ; 8(9): 211099, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34540262

RESUMO

Birds exposed to food insecurity-defined as temporally variable access to food-respond adaptively by storing more energy. To do this, they may reduce energy allocation to other functions such as somatic maintenance and repair. To investigate this trade-off, we exposed juvenile European starlings (Sturnus vulgaris, n = 69) to 19 weeks of either uninterrupted food availability or a regime where food was unpredictably unavailable for a 5-h period on 5 days each week. Our measures of energy storage were mass and fat scores. Our measures of somatic maintenance were the growth rate of a plucked feather, and erythrocyte telomere length (TL), measured by analysis of the terminal restriction fragment. The insecure birds were heavier than the controls, by an amount that varied over time. They also had higher fat scores. We found no evidence that they consumed more food overall, though our food consumption data were incomplete. Plucked feathers regrew more slowly in the insecure birds. TL was reduced in the insecure birds, specifically, in the longer percentiles of the within-individual TL distribution. We conclude that increased energy storage in response to food insecurity is achieved at the expense of investment in somatic maintenance and repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA