Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Scand J Immunol ; 93(2): e13012, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33336406

RESUMO

Interleukin-32 (IL-32) is a pro-inflammatory cytokine that induces other cytokines involved in inflammation, including tumour necrosis factor (TNF)-α, IL-6 and IL-1ß. Recent evidence suggests that IL-32 has a crucial role in host defence against pathogens, as well as in the pathogenesis of chronic inflammation. Abnormal IL-32 expression has been linked to several autoimmune diseases, such as rheumatoid arthritis and inflammatory bowel diseases, and a recent study suggested the importance of IL-32 in the pathogenesis of type 1 diabetes. However, despite accumulating evidence, many molecular characteristics of this cytokine, including the secretory route and the receptor for IL-32, remain largely unknown. In addition, the IL-32 gene is found in higher mammals but not in rodents. In this review, we outline the current knowledge of IL-32 biological functions, properties, and its role in autoimmune diseases. We particularly highlight the role of IL-32 in rheumatoid arthritis and type 1 diabetes.


Assuntos
Autoimunidade/imunologia , Interleucinas/imunologia , Animais , Doenças Autoimunes/imunologia , Citocinas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Humanos , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia
2.
Int Immunopharmacol ; 77: 105976, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31732450

RESUMO

BAY 41-2272 increases guanosine 3', 5'-cyclic monophosphate (cGMP) levels by stimulating soluble guanylate cyclase (sGC). In this study, we evaluated the effect of BAY 41-2272 on human T lymphocyte functions. Pretreating T cells for 24 h with BAY 41-2272 at 3 µM and 30 µM, followed by activation with 90 nM phorbol myristate acetate (PMA), inhibited interferon-gamma (IFN-γ) production, with 3 µM and 30 µM BAY causing 16.5-fold and 12.1-fold inhibition, respectively, compared to PMA alone (p < 0.05, one-way ANOVA followed by Tukey's test). We also observed suppressive effects on the expression of CD69, with 30 µM BAY causing 3.55-fold lower expression than PMA/ionomycin (p < 0.001 one-way ANOVA followed by Tukey's test), and T-bet, with 30 µM BAY causing 1.47-fold lower expression than PMA/ionomycin (p < 0.05, one-way ANOVA test followed by Tukey's test). Additionally, T lymphocyte proliferation was reduced 2.13-fold and 4.3-fold, respectively, by 3 µM BAY and 30 µM BAY compared to PMA/ionomycin (p < 0.01, p < 0.001, one-way ANOVA followed by Tukey's test). BAY 41-2272 inhibits human T lymphocyte function and may be explored as an immunomodulatory drug in patients with autoimmune/inflammatory diseases and lymphoproliferative syndromes.


Assuntos
Pirazóis/farmacologia , Piridinas/farmacologia , Linfócitos T/efeitos dos fármacos , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Proliferação de Células/efeitos dos fármacos , Guanilato Ciclase/metabolismo , Humanos , Fatores Imunológicos/metabolismo , Interferon gama/metabolismo , Ionomicina/farmacologia , Lectinas Tipo C/metabolismo , Linfócitos T/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
3.
Int Immunopharmacol ; 75: 105767, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31376626

RESUMO

BAY 41-2272 is a guanylyl cyclase (GC) stimulator derived from YC-1 (3-[(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole]). Previous studies by our group showed that BAY 41-2272 activates human monocytes via soluble guanylyl cyclase (sGC) and cGMP. In this study, we investigated the effect of BAY 41-2272 on human neutrophil function and found that 30 µM BAY 41-2272 inhibits neutrophil migration (1.82-fold lower than FMLP, P < 0.05 by one-way ANOVA followed by Tukey's test), oxidative burst (1.70-fold lower than PMA, P < 0.05 by one-way ANOVA followed by Tukey's test), and IL-8 cytokine production (1.80-fold lower than PMA, P < 0.05 by one-way ANOVA followed by Tukey's test). Our results suggest that these effects are independent of the sGC pathway but dependent instead on cGMP production, as the response induced by 30 µM BAY 41-2272 was 6.40-fold greater than that observed in our negative control (P < 0.05 by parametric t-test). 1H-[1, 2, 4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ), which is an irreversible inhibitor of sGC, was unable to reverse the effects of BAY 41-2272 on human neutrophils, indicating that this drug acts independently of sGC. Our results confirm the immunomodulatory effect of BAY 41-2272 on human neutrophils.


Assuntos
Fatores Imunológicos/farmacologia , Neutrófilos/efeitos dos fármacos , Pirazóis/farmacologia , Piridinas/farmacologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , GMP Cíclico/metabolismo , Humanos , Interleucina-8/metabolismo , Neutrófilos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/efeitos dos fármacos , Superóxidos/metabolismo
4.
iScience ; 11: 334-355, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30641411

RESUMO

Th17 cells contribute to the pathogenesis of inflammatory and autoimmune diseases and cancer. To reveal the Th17 cell-specific proteomic signature regulating Th17 cell differentiation and function in humans, we used a label-free mass spectrometry-based approach. Furthermore, a comprehensive analysis of the proteome and transcriptome of cells during human Th17 differentiation revealed a high degree of overlap between the datasets. However, when compared with corresponding published mouse data, we found very limited overlap between the proteins differentially regulated in response to Th17 differentiation. Validations were made for a panel of selected proteins with known and unknown functions. Finally, using RNA interference, we showed that SATB1 negatively regulates human Th17 cell differentiation. Overall, the current study illustrates a comprehensive picture of the global protein landscape during early human Th17 cell differentiation. Poor overlap with mouse data underlines the importance of human studies for translational research.

5.
Diabetes ; 68(10): 2024-2034, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31311800

RESUMO

The appearance of type 1 diabetes (T1D)-associated autoantibodies is the first and only measurable parameter to predict progression toward T1D in genetically susceptible individuals. However, autoantibodies indicate an active autoimmune reaction, wherein the immune tolerance is already broken. Therefore, there is a clear and urgent need for new biomarkers that predict the onset of the autoimmune reaction preceding autoantibody positivity or reflect progressive ß-cell destruction. Here we report the mRNA sequencing-based analysis of 306 samples including fractionated samples of CD4+ and CD8+ T cells as well as CD4-CD8- cell fractions and unfractionated peripheral blood mononuclear cell samples longitudinally collected from seven children who developed ß-cell autoimmunity (case subjects) at a young age and matched control subjects. We identified transcripts, including interleukin 32 (IL32), that were upregulated before T1D-associated autoantibodies appeared. Single-cell RNA sequencing studies revealed that high IL32 in case samples was contributed mainly by activated T cells and NK cells. Further, we showed that IL32 expression can be induced by a virus and cytokines in pancreatic islets and ß-cells, respectively. The results provide a basis for early detection of aberrations in the immune system function before T1D and suggest a potential role for IL32 in the pathogenesis of T1D.


Assuntos
Autoanticorpos , Autoimunidade/fisiologia , Diabetes Mellitus Tipo 1/diagnóstico , Células Secretoras de Insulina/imunologia , Biomarcadores/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Pré-Escolar , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/imunologia , Progressão da Doença , Diagnóstico Precoce , Feminino , Humanos , Lactente , Masculino
6.
Hum Immunol ; 77(4): 358-64, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26883941

RESUMO

Besides the well recognized association of HLA-DRB1 and DQB1 alleles with type 1 diabetes mellitus (T1D), linkage studies have identified a gene region close to the non-classical class I HLA-G gene as an independent susceptibility marker. HLA-G is constitutively expressed in the endocrine compartment of the human pancreas and may play a role in controlling autoimmune responses. We evaluated the genetic diversity of the 3' untranslated region (3'UTR) of HLA-G, which have been associated with HLA-G mRNA post-transcriptional regulation, in 120 Brazilian T1D patients and in 120 healthy controls. We found the +3001 T allele was observed only in T1D patients. Notably, the +3001 T allele was in linkage disequilibrium with polymorphic sites associated with low production of HLA-G mRNA or soluble HLA-G levels. Moreover, T1D patients showed a low frequency of the HLA-G 3'UTR-17 (14bpINS/+3001T/+3003T/+3010C/+3027C/+3035T/+3142G/+3187A/+3196C). The +3010 CC genotype and the UTR-3 haplotype (14bpDEL/+3001C/+3003T/+3010C/+3027C/+3035C/+3142G/+3187A/+3196C), associated with low and moderate soluble HLA-G expression, respectively, were underrepresented in patients. The decreased expression of HLA-G at the pancreas level should be detrimental in individuals genetically prone to produce less HLA-G.


Assuntos
Regiões 3' não Traduzidas , Diabetes Mellitus Tipo 1/genética , Variação Genética , Antígenos HLA-G/genética , Adolescente , Adulto , Alelos , Estudos de Casos e Controles , Criança , Feminino , Frequência do Gene , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Razão de Chances , Polimorfismo de Nucleotídeo Único , Adulto Jovem
7.
J Rheumatol ; 40(7): 1104-13, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23678155

RESUMO

OBJECTIVE: HLA-G has well recognized tolerogenic properties in physiological and nonphysiological conditions. The 3' untranslated region (3'UTR) of the HLA-G gene has at least 3 polymorphic sites (14-bpINS/DEL, +3142C/G, and +3196C/G) described as associated with posttranscriptional influence on messenger RNA production; however, only the 14-bpINS/DEL and +3142C/G sites have been studied in systemic lupus erythematosus (SLE). METHODS: We investigated the HLA-G 3'UTR polymorphic sites (14-bpINS/DEL, +3003C/T, +3010C/G, +3027A/C, +3035C/T, +3142C/G, +3187A/G, and +3196C/G) in 190 Brazilian patients with SLE and 282 healthy individuals in allele, genotype, and haplotype analyses. A multiple logistic regression model was used to assess the association of the disease features with the HLA-G 3'UTR haplotypes. RESULTS: Increased frequencies were observed of the 14-bpINS (p = 0.053), +3010C (p = 0.008), +3142G (p = 0.006), and +3187A (p = 0.013) alleles, and increased frequencies of the 14-bpINS-INS (p = 0.094), +3010 C-C (p = 0.033), +3142 G-G (p = 0.021), and +3187 A-A (p = 0.035) genotypes. After Bonferroni correction, only the +3142G (p = 0.05) and +3010C (p = 0.06) alleles were overrepresented in SLE patients. The UTR-1 haplotype (14-bpDEL/+3003T/+3010G/+3027C/+3035C/+3142C/+3187G/+3196C) was underrepresented in SLE (pcorr = 0.035). CONCLUSION: These results indicate that HLA-G 3'UTR polymorphic sites, particularly +3142G and +3010C alleles, were associated with SLE susceptibility, whereas UTR-1 was associated with protection against development of SLE.


Assuntos
Regiões 3' não Traduzidas , Antígenos HLA-G/genética , Lúpus Eritematoso Sistêmico/genética , Polimorfismo Genético , Adolescente , Adulto , Idoso , Alelos , Brasil , Estudos de Casos e Controles , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA