Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(28): e2111212119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787044

RESUMO

The origins of Homo, as well as the diversity and biogeographic distribution of early Homo species, remain critical outstanding issues in paleoanthropology. Debates about the recognition of early Homo, first appearance dates, and taxonomic diversity within Homo are particularly important for determining the role that southern African taxa may have played in the origins of the genus. The correct identification of Homo remains also has implications for reconstructing phylogenetic relationships between species of Australopithecus and Paranthropus, and the links between early Homo species and Homo erectus. We use microcomputed tomography and landmark-free deformation-based three-dimensional geometric morphometrics to extract taxonomically informative data from the internal structure of postcanine teeth attributed to Early Pleistocene Homo in the southern African hominin-bearing sites of Sterkfontein, Swartkrans, Drimolen, and Kromdraai B. Our results indicate that, from our sample of 23 specimens, only 4 are unambiguously attributed to Homo, 3 of them coming from Swartkrans member 1 (SK 27, SK 847, and SKX 21204) and 1 from Sterkfontein (Sts 9). Three other specimens from Sterkfontein (StW 80 and 81, SE 1508, and StW 669) approximate the Homo condition in terms of overall enamel-dentine junction shape, but retain Australopithecus-like dental traits, and their generic status remains unclear. The other specimens, including SK 15, present a dominant australopith dental signature. In light of these results, previous dietary and ecological interpretations can be reevaluated, showing that the geochemical signal of one tooth from Kromdraai (KB 5223) and two from Swartkrans (SK 96 and SKX 268) is consistent with that of australopiths.


Assuntos
Hominidae , Dente , Animais , Fósseis , Filogenia , Dente/diagnóstico por imagem , Microtomografia por Raio-X
2.
J Anat ; 234(2): 179-192, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30474264

RESUMO

Hearing capabilities in desert rodents such as gerbils and heteromyids have been inferred from both anatomical and ecological aspects and tested with experiments and theoretical models. However, very few studies have focused on other desert-adapted species. In this study, a refined three-dimensional morphometric approach was used on three African rodent tribes (Otomyini, Taterillini and Gerbillini) to describe the cochlear and tympanic bullar morphology, and to explore the role of phylogeny, allometry and ecology to better understand the underlying mechanism of any observed trends of hypertrophy in the bulla and associated changes in the cochlea. As a result, desert-adapted species could be distinguished from mesic and semi-arid taxa by the gross cochlear dimensions, particularly the oval window, which is larger in desert species. Bullar and cochlear modifications between species could be explained by environment (bulla and oval window), phylogeny (cochlear curvature gradient) and/or allometry (cochlear relative length, oval window and bulla) with some exceptions. Based on their ear anatomy, we predict that Desmodillus auricularis and Parotomys brantsii should be sensitive to low-frequency sounds, with D. auricularis sensitive to high-frequency sounds, too. This study concludes that in both arid and semi-arid adapted laminate-toothed rats and gerbils there is bulla and associated cochlea hypertrophy, particularly in true desert species. Gerbils also show tightly coiled cochlea but the significance of this is debatable and may have nothing to do with adaptations to any specific acoustics in the desert environment.


Assuntos
Adaptação Biológica , Cóclea/anatomia & histologia , Gerbillinae/anatomia & histologia , Murinae/anatomia & histologia , Crânio/anatomia & histologia , África , Animais , Evolução Biológica , Clima Desértico , Ecossistema , Feminino , Masculino
3.
J Hum Evol ; 130: 21-35, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31010541

RESUMO

Morphometric assessments of the dentition have played significant roles in hypotheses relating to taxonomic diversity among extinct hominins. In this regard, emphasis has been placed on the statistical appraisal of intraspecific variation to identify morphological criteria that convey maximum discriminatory power. Three-dimensional geometric morphometric (3D GM) approaches that utilize landmarks and semi-landmarks to quantify shape variation have enjoyed increasingly popular use over the past twenty-five years in assessments of the outer enamel surface (OES) and enamel-dentine junction (EDJ) of fossil molars. Recently developed diffeomorphic surface matching (DSM) methods that model the deformation between shapes have drastically reduced if not altogether eliminated potential methodological inconsistencies associated with the a priori identification of landmarks and delineation of semi-landmarks. As such, DSM has the potential to better capture the geometric details that describe tooth shape by accounting for both homologous and non-homologous (i.e., discrete) features, and permitting the statistical determination of geometric correspondence. We compare the discriminatory power of 3D GM and DSM in the evaluation of the OES and EDJ of mandibular permanent molars attributed to Australopithecus africanus, Paranthropus robustus and early Homo sp. from the sites of Sterkfontein and Swartkrans. For all three molars, classification and clustering scores demonstrate that DSM performs better at separating the A. africanus and P. robustus samples than does 3D GM. The EDJ provided the best results. P. robustus evinces greater morphological variability than A. africanus. The DSM assessment of the early Homo molar from Swartkrans reveals its distinctiveness from either australopith sample, and the "unknown" specimen from Sterkfontein (Stw 151) is notably more similar to Homo than to A. africanus.


Assuntos
Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Dente Molar/anatomia & histologia , Paleodontologia/métodos , Animais , Mandíbula/anatomia & histologia , Paleodontologia/instrumentação , África do Sul
4.
J Hum Evol ; 135: 102666, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31499455

RESUMO

Studies of the australopith (Australopithecus and Paranthropus) proximal femur have increasingly integrated information from the local arrangement of the cortical and cancellous bone to allow functional-biomechanical inferences on the locomotor behavioral patterns. In Australopithecus africanus and Paranthropus robustus, the cancellous bone organization at the center of the femoral head shows principal strut orientation similar to that of fossil and recent humans, which indicates that australopiths were human-like in many aspects of their bipedalism. However, by combining outer morphology with superoinferior asymmetry in cortical bone thickness at the base of neck and mid-neck, it has been suggested that, while adapted for terrestrial bipedality, australopiths displayed a slightly altered gait kinematics compared to Homo. We used techniques of 2D and 3D virtual imaging applied to an X-ray microtomographic record to assess cortical bone distribution along the entire femoral neck compartment in four upper femora from Swartkrans, South Africa (SK 82, SK 97, SK 3121, and SWT1/LB-2) and compared the results to the extant human and chimpanzee conditions. Our results support and extend previous evidence for more symmetric superior and inferior femoral neck cortical thicknesses in P. robustus than in modern humans and show that the differences are even greater than previously reported. However, P. robustus and humans still share a trend of lateral-to-medial decrease in asymmetry of the superior/inferior cortical thickness ratio, while this pattern is reversed in chimpanzees. We also identified two features uniquely characterizing P. robustus: an accentuated contrast between the relatively thicker anterior and the thinner posterior walls, and a more marked lateral-to-medial thinning of both cortices compared to extant humans and chimpanzees, which indicate wider interspecific differences among hominids in structural organization of the proximal femur than previously reported. It remains to be ascertained if, and to what extent, these features also characterize the femoral neck of Australopithecus.


Assuntos
Osso Cortical/anatomia & histologia , Colo do Fêmur/anatomia & histologia , Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Animais , Fenômenos Biomecânicos , Feminino , Marcha , Hominidae/fisiologia , Masculino , África do Sul
5.
J Hum Evol ; 127: 67-80, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30777359

RESUMO

Because of its exceptional degree of preservation and its geological age of ∼3.67 Ma, StW 573 makes an invaluable contribution to our understanding of early hominin evolution and paleobiology. The morphology of the bony labyrinth has the potential to provide information about extinct primate taxonomic diversity, phylogenetic relationships and locomotor behaviour. In this context, we virtually reconstruct and comparatively assess the bony labyrinth morphology in StW 573. As comparative material, we investigate 17 southern African hominin specimens from Sterkfontein, Swartkrans and Makapansgat (plus published data from two specimens from Kromdraai B), attributed to Australopithecus, early Homo or Paranthropus, as well as 10 extant human and 10 extant chimpanzee specimens. We apply a landmark-based geometric morphometric method for quantitatively assessing labyrinthine morphology. Morphology of the inner ear in StW 573 most closely resembles that of another Australopithecus individual from Sterkfontein, StW 578, recovered from the Jacovec Cavern. Within the limits of our sample, we observe a certain degree of morphological variation in the Australopithecus assemblage of Sterkfontein Member 4. Cochlear morphology in StW 573 is similar to that of other Australopithecus as well as to Paranthropus specimens included in this study, but it is substantially different from early Homo. Interestingly, the configuration of semicircular canals in Paranthropus specimens from Swartkrans differs from other fossil hominins, including StW 573. Given the role of the cochlea in the sensory-driven interactions with the surrounding environment, our results offer new perspectives for interpreting early hominin behaviour and ecology. Finally, our study provides additional evidence for discussing the phylogenetic polarity of labyrinthine traits in southern African hominins.


Assuntos
Orelha Interna/anatomia & histologia , Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Animais , Evolução Biológica , Características de História de Vida , África do Sul
6.
J Hum Evol ; 126: 112-123, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30583840

RESUMO

One of the most crucial debates in human paleoneurology concerns the timing and mode of the emergence of the derived cerebral features in the hominin fossil record. Given its exceptional degree of preservation and geological age (i.e., 3.67 Ma), StW 573 ('Little Foot') has the potential to shed new light on hominin brain evolution. Here we present the first detailed comparative description of the external neuroanatomy of StW 573. The endocast was virtually reconstructed and compared to ten southern African hominin specimens from Makapansgat, Malapa, Sterkfontein and Swartkrans attributed to Australopithecus and Paranthropus. We apply an automatic method for the detection of sulcal and vascular imprints. The endocranial surface of StW 573 is crushed and plastically deformed in a number of locations. The uncorrected and therefore minimum cranial capacity estimate is 408 cm3 and plots at the lower end of Australopithecus variation. The endocast of StW 573 approximates the rostrocaudally elongated and dorsoventrally flattened endocranial shape seen in Australopithecus and displays a distinct left occipital petalia. StW 573 and the comparative early hominin specimens share a similar sulcal pattern in the inferior region of the frontal lobes that also resembles the pattern observed in extant chimpanzees. The presumed lunate sulcus in StW 573 is located above the sigmoid sinus, as in extant chimpanzees, while it is more caudally positioned in SK 1585 and StW 505. The middle branch of the middle meningeal vessels derives from the anterior branch, as in MH 1, MLD 37/38, StW 578. Overall, the cortical anatomy of StW 573 displays a less derived condition compared to the late Pliocene/early Pleistocene southern African hominins (e.g., StW 505, SK 1585).


Assuntos
Evolução Biológica , Encéfalo/anatomia & histologia , Hominidae/anatomia & histologia , Crânio/anatomia & histologia , Animais , Fósseis , África do Sul
7.
Am J Phys Anthropol ; 168(1): 229-241, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30267417

RESUMO

OBJECTIVES: The scoring and analysis of dental nonmetric traits are predominantly accomplished by using the Arizona State University Dental Anthropology System (ASUDAS), a standard protocol based on strict definitions and three-dimensional dental plaques. However, visual scoring, even when controlled by strict definitions of features, visual reference, and the experience of the observer, includes an unavoidable part of subjectivity. In this methodological contribution, we propose a new quantitative geometric morphometric approach to quickly and efficiently assess the variation of shoveling in modern human maxillary central incisors (UI1). MATERIALS AND METHODS: We analyzed 87 modern human UI1s by means of virtual imaging and the ASU-UI1 dental plaque grades using geometric morphometrics by placing semilandmarks on the labial crown aspect. The modern human sample was composed of individuals from Europe, Africa, and Asia and included representatives of all seven grades defined by the ASUDAS method. RESULTS: Our results highlighted some limitations in the use of the current UI1 ASUDAS plaque, indicating that it did not necessarily represent an objective gradient of expression of a nonmetric tooth feature. Rating of shoveling tended to be more prone to intra- and interobserver bias for the highest grades. In addition, our analyses suggest that the observers were strongly influenced by the depth of the lingual crown aspect when assessing the shoveling. DISCUSSION: In this context, our results provide a reliable and reproducible framework reinforced by statistical results supporting the fact that open scale numerical measurements can complement the ASUDAS method.


Assuntos
Antropologia Física/métodos , Incisivo/anatomia & histologia , Odontometria/métodos , Humanos , Imageamento Tridimensional
8.
J Anat ; 232(2): 296-303, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29148040

RESUMO

Assessment of global endocranial morphology and regional neuroanatomical changes in early hominins is critical for the reconstruction of evolutionary trajectories of cerebral regions in the human lineage. Early evidence of cortical reorganization in specific local areas (e.g. visual cortex, inferior frontal gyrus) is perceptible in the non-human South African hominin fossil record. However, to date, little information is available regarding potential global changes in the early hominin brain. The introduction of non-invasive imaging techniques opens up new perspectives for the study of hominin brain evolution. In this context, our primary aim in this study is to explore the organization of the Australopithecus africanus endocasts, and highlight the nature and extent of the differences distinguishing A. africanus from the extant hominids at both local and global scales. By means of X-ray-based imaging techniques, we investigate two A. africanus specimens from Sterkfontein Member 4, catalogued as Sts 5 and Sts 60, respectively a complete cranium and a partial cranial endocast. Endocrania were virtually reconstructed and compared by using a landmark-free registration method based on smooth and invertible surface deformation. Both local and global information provided by our deformation-based approach are used to perform statistical analyses and topological mapping of inter-specific variation. Statistical analyses indicate that the endocranial shape of Sts 5 and Sts 60 approximates the Pan condition. Furthermore, our study reveals substantial differences with respect to the extant human condition, particularly in the parietal regions. Compared with Pan, the endocranial shape of the fossil specimens differs in the anterior part of the frontal gyri.


Assuntos
Evolução Biológica , Hominidae/anatomia & histologia , Crânio/anatomia & histologia , Animais , Encéfalo/anatomia & histologia , Feminino , Fósseis , Humanos , Imageamento Tridimensional , Masculino , Tomografia Computadorizada por Raios X
9.
J Hum Evol ; 121: 204-220, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29793791

RESUMO

The Sterkfontein Caves site is one of the richest early hominin fossil localities in Africa. More specifically, the fossiliferous deposits within the lower-lying Jacovec Cavern have yielded valuable hominin remains; prominent among them is the Australopithecus partial cranium StW 578. Due to the fragmentary nature of the braincase, the specimen has not yet been formally assigned to a species. In this context, we employ microtomography to quantify cranial thickness and composition of StW 578 in order to assess its taxonomic affinity. As comparative material, we investigate 10 South African hominin cranial specimens from Sterkfontein (StW 505, Sts 5, Sts 25, Sts 71), Swartkrans (SK 46, SK 48, SK 49) and Makapansgat (MLD 1, MLD 10, MLD 37/38), attributed to either Australopithecus or Paranthropus, as well as 10 extant human and 10 extant chimpanzee crania. Thickness variation in and structural arrangement of the inner and outer cortical tables and the diploë are automatically assessed at regular intervals along one parasagittal and one coronal section. Additionally, topographic cranial vault thickness distribution is visualized using color maps. Comparisons highlight an absolutely and relatively thickened condition of the StW 578 cranial vault versus those of other South African Plio-Pleistocene hominins. Moreover, in StW 578, as well as in the Australopithecus specimens Sts 5 and Sts 71 from Sterkfontein, the diploic layer contributes substantially to cumulative vault thickness (i.e., >60%). Within the comparative sample investigated here, StW 505 and Sts 71 from Sterkfontein Member 4, both attributed to Australopithecus, most closely resemble StW 578 in terms of cranial vault thickness values, tissue proportions, and two- and three-dimensional distributions. Including additional Plio-Pleistocene Australopithecus and Paranthropus crania from South and East Africa in future studies would further help establish morphological variability in these hominin taxa.


Assuntos
Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Crânio/anatomia & histologia , Animais , Cavernas , Feminino , Masculino , África do Sul
10.
Am J Phys Anthropol ; 163(4): 806-815, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28573649

RESUMO

OBJECTIVES: The aim of this study is to compare the degree and patterning of inter- and intra-individual metameric variation in South African australopiths, early Homo and modern humans. Metameric variation likely reflects developmental and taxonomical issues, and could also be used to infer ecological and functional adaptations. However, its patterning along the early hominin postcanine dentition, particularly among South African fossil hominins, remains unexplored. MATERIALS AND METHODS: Using microfocus X-ray computed tomography (µXCT) and geometric morphometric tools, we studied the enamel-dentine junction (EDJ) morphology and we investigated the intra- and inter-individual EDJ metameric variation among eight australopiths and two early Homo specimens from South Africa, as well as 32 modern humans. RESULTS: Along post-canine dentition, shape changes between metameres represented by relative positions and height of dentine horns, outlines of the EDJ occlusal table are reported in modern and fossil taxa. Comparisons of EDJ mean shapes and multivariate analyses reveal substantial variation in the direction and magnitude of metameric shape changes among taxa, but some common trends can be found. In modern humans, both the direction and magnitude of metameric shape change show increased variability in M2 -M3 compared to M1 -M2 . Fossil specimens are clustered together showing similar magnitudes of shape change. Along M2 -M3 , the lengths of their metameric vectors are not as variable as those of modern humans, but they display considerable variability in the direction of shape change. CONCLUSION: The distalward increase of metameric variation along the modern human molar row is consistent with the odontogenetic models of molar row structure (inhibitory cascade model). Though much remains to be tested, the variable trends and magnitudes in metamerism in fossil hominins reported here, together with differences in the scale of shape change between modern humans and fossil hominins may provide valuable information regarding functional morphology and developmental processes in fossil species.


Assuntos
Esmalte Dentário/anatomia & histologia , Dentina/anatomia & histologia , Fósseis , Hominidae/anatomia & histologia , Dente/anatomia & histologia , Animais , Humanos , Paleodontologia , Análise de Componente Principal , Microtomografia por Raio-X
11.
J Hum Evol ; 96: 82-96, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27343773

RESUMO

The appearance of the earliest members of the genus Homo in South Africa represents a key event in human evolution. Although enamel thickness and enamel dentine junction (EDJ) morphology preserve important information about hominin systematics and dietary adaptation, these features have not been sufficiently studied with regard to early Homo. We used micro-CT to compare enamel thickness and EDJ morphology among the mandibular postcanine dentitions of South African early hominins (N = 30) and extant Homo sapiens (N = 26), with special reference to early members of the genus Homo. We found that South African early Homo shows a similar enamel thickness distribution pattern to modern humans, although three-dimensional average and relative enamel thicknesses do not distinguish australopiths, early Homo, and modern humans particularly well. Based on enamel thickness distributions, our study suggests that a dietary shift occurred between australopiths and the origin of the Homo lineage. We also observed that South African early Homo postcanine EDJ combined primitive traits seen in australopith molars with derived features observed in modern human premolars. Our results confirm that some dental morphological patterns in later Homo actually occurred early in the Homo lineage, and highlight the taxonomic value of premolar EDJ morphology in hominin species.


Assuntos
Dente Pré-Molar/anatomia & histologia , Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Dente Molar/anatomia & histologia , Animais , Evolução Biológica , Esmalte Dentário/anatomia & histologia , Dentina/anatomia & histologia , Humanos , África do Sul , Microtomografia por Raio-X
12.
J Hum Evol ; 95: 104-20, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27260177

RESUMO

Despite the abundance of cercopithecoids in the fossil record, especially in South Africa, and the recent development of morphometric approaches, uncertainties regarding the taxonomic identification of isolated cranio-dental specimens remain. Because cercopithecoids, nearly always found in stratigraphic association with hominin remains in Plio-Pleistocene deposits, are considered as sensitive ecological and chronological biomarkers, a significant effort should be made to clarify their palaeobiodiversity by assessing additional reliable morphological diagnostic criteria. Here we test the relevance of both molar crown internal structure and bony labyrinth morphology for discrimination of fossil cercopithecoid species. We use microtomographic-based 3D virtual imaging and quantitative analyses to investigate tooth endostructural organization and inner ear shape in 29 craniodental specimens from the South African sites of Kromdraai, Makapansgat, Sterkfontein and Swartkrans and provide the first detailed description of the internal structural condition characterizing this Plio-Pleistocene primate assemblage. Our preliminary results show that enamel-dentine junction morphology could be informative for discriminating highly autapomorphic taxa such as Theropithecus, while semicircular canal shape is tentatively proposed as an efficient criterion for diagnosing Dinopithecus ingens. Further research in virtual paleoprimatology may contribute to the identification of unassigned isolated fossil remains and shed new light on the internal craniodental morphology of extinct primate taxa.


Assuntos
Cercopithecinae/anatomia & histologia , Fósseis/anatomia & histologia , Dente Molar/anatomia & histologia , Canais Semicirculares/anatomia & histologia , Animais , Paleodontologia , África do Sul
13.
J Hum Evol ; 101: 65-78, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27886811

RESUMO

Despite the abundance of well-preserved crania and natural endocasts in the South African Plio-Pleistocene cercopithecoid record, which provide direct information relevant to the evolution of their endocranial characteristics, few studies have attempted to characterize patterns of external brain morphology in this highly successful primate Superfamily. The availability of non-destructive penetrating radiation imaging systems, together with recently developed computer-based analytical tools, allow for high resolution virtual imaging and modeling of the endocranial casts and thus disclose new perspectives in comparative paleoneurology. Here, we use X-ray microtomographic-based 3D virtual imaging and quantitative analyses to investigate the endocranial organization of 14 cercopithecoid specimens from the South African sites of Makapansgat, Sterkfontein, Swartkrans, and Taung. We present the first detailed comparative description of the external neuroanatomies that characterize these Plio-Pleistocene primates. Along with reconstruction of endocranial volumes, we combine a semi-automatic technique for extracting the neocortical sulcal pattern together with a landmark-free surface deformation method to investigate topographic differences in morphostructural organization. Besides providing and comparing for the first time endocranial volume estimates of extinct Plio-Pleistocene South African cercopithecoid taxa, we report additional information regarding the variation in the sulcal pattern of Theropithecus oswaldi subspecies, and notably of the central sulcus, and the neuroanatomical condition of the colobine taxon Cercopithecoides williamsi, suggested to be similar for some aspects to the papionin pattern, and discuss potential phylogenetic and taxonomic implications. Further research in virtual paleoneurology, applied to specimens from a wider geographic area, is needed to clarify the polarity, intensity, and timing of cortical surface evolution in cercopithecoid lineages.


Assuntos
Encéfalo/anatomia & histologia , Cercopithecus/anatomia & histologia , Fósseis/anatomia & histologia , Crânio/anatomia & histologia , Theropithecus/anatomia & histologia , África Austral , Animais , Evolução Biológica , Cercopithecus/classificação , Imageamento Tridimensional , Theropithecus/classificação , Microtomografia por Raio-X
14.
Am J Phys Anthropol ; 159(4): 737-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26661468

RESUMO

The Plio-Pleistocene karstic sedimentary deposits of Sterkfontein Cave, South Africa, yielded numerous fossil primate specimens embedded in blocks of indurated breccia, including the partial cercopithecoid cranium labelled STS 1039. Because the surrounding matrix masks most of its morphology, the specimen remains taxonomically undetermined. While the use of X-ray microtomography did not allow extracting any structural information about the specimen, we experimented a new investigative technique based on neutron microtomography. Using this innovative approach, we successfully virtually extracted, reconstructed in 3D and quantitatively assessed the preserved dentognathic structural morphology of STS 1039, including details of its postcanine maxillary dentition. Following comparative analyses with a number of Plio-Pleistocene and extant cercopithecoid taxa, we tentatively propose a taxonomic attribution to the taxon Cercopithecoides williamsi. Our experience highlights the remarkable potential of this novel imaging method to extract diagnostic information and to identify the fossil remains embedded in hard breccia from the South African hominin-bearing cave sites.


Assuntos
Cercopithecidae/anatomia & histologia , Fósseis , Crânio/anatomia & histologia , Animais , Antropologia Física , Cavernas , África do Sul , Tomografia
15.
J Hum Evol ; 65(4): 447-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24012253

RESUMO

The site of Kromdraai B (KB) (Gauteng, South Africa) has yielded a minimum number of nine hominins including the type specimen of Paranthropus robustus (TM 1517), the only partial skeleton of this species known to date. Four of these individuals are juveniles, one is a subadult and four are young adults. They all occur with a macrofaunal assemblage spread across the succession of at least two time periods that occurred in South Africa approximately two million years ago. Here we report on an additional, newly discovered petrous temporal bone of a juvenile hominin, KB 6067. Following the description of KB 6067, we assess its affinities with Australopithecus africanus, P. robustus and early Homo. We discuss its developmental age and consider its association with other juvenile hominin specimens found at Kromdraai B. KB 6067 probably did not reach five years of age and in bony labyrinth morphology it is close to P. robustus, but also to StW 53, a specimen with uncertain affinities. However, its cochlear and oval window size are closer to some hominin specimens from Sterkfontein Member 4 and if KB 6067 is indeed P. robustus this may represent a condition that is evolutionarily less derived than that shown by TM 1517 and other conspecifics sampled so far. The ongoing fieldwork at KB, as well as the petrography and geochemistry of its deposits, will help to determine when the various KB breccias accumulated, and how time may be an important factor underlying the variation seen among KB 6067 and the rest of the fossil hominin sample from this site.


Assuntos
Evolução Biológica , Hominidae/anatomia & histologia , Osso Petroso/anatomia & histologia , Animais , Hominidae/classificação , Filogenia , África do Sul
16.
Environ Sci Pollut Res Int ; 29(37): 55743-55756, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35322361

RESUMO

It has recently been shown that pervious concrete is a promising, effective technology as a permeable reactive barrier system for treatment of acid mine drainage (AMD). However, pore clogging also occurs simultaneously during AMD treatment. In the present study, mixtures of pervious concrete were made and used in a column experiment during which pore clogging occurred in the samples. Pore volume, connectivity and other parameters of pervious concrete were evaluated using five (5) different methods comprising the volumetric method (VM), linear-traverse method (LTM), image analysis (IA), falling head permeability test and X-ray microcomputed tomography. It was found that pervious concrete effectively removed from AMD, about 90 to 99% of various heavy metals including Al, Fe, Zn, Mn and Mg. Cr concentration significantly increased in the treated effluent, owing to leaching from cementitious materials used in mixtures. The VM and LTM gave statistically similar pore volume results, while IA's values were 20 to 30% higher than those of the conventional methods. The falling head permeability test and IA were found to be effective in quantifying pore clogging effects. Pervious concrete exhibited high pore connectivity of 95.0 to 99.7%, which underlies its efficacious hydraulic conductivity.


Assuntos
Materiais de Construção , Metais Pesados , Materiais de Construção/análise , Permeabilidade , Microtomografia por Raio-X
17.
J Neurosurg Sci ; 65(2): 200-206, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30916524

RESUMO

BACKGROUND: Sub-Saharan neurosurgeons most likely need to perform invasive procedures without the latest imaging and navigation technology in the operating room. Therefore, these surgeons need to utilize other methods such as superficial surface landmarks for neuro-navigation. Bony landmarks, including the inion and asterion, are commonly used during invasive procedures to pinpoint the location of the confluence of sinuses and transverse-sigmoid sinus junction, respectively. The purpose of this study was to investigate whether the inion and asterion can be used as superficial landmarks for the confluence of sinuses and the transverse-sigmoid sinus junction, respectively, in a South African population. METHODS: Fifty South African human skulls were used (25 male, 25 female). The micro-focus X-ray radiography and tomography facility (MIXRAD) at Necsa scanned and created three-dimensional virtual images of the skull specimens. Reference points were then inserted on the images and the relation between bony landmarks and venous sinuses was documented. RESULTS: The inion was directly related to the confluence of sinuses in 4% of the sample, whereas the asterion was directly related to the transverse-sigmoid sinus junction in 28% of the cases, on both the right and left sides. CONCLUSIONS: This study confirmed that neither the inion, nor the asterion, are directly related the confluence of sinuses and transverse-sigmoid sinus junction, respectively. These bony landmarks are more likely to be located either inferior, or not related at all, to the investigated dural venous sinuses.


Assuntos
Seios Paranasais , Crânio , Cavidades Cranianas/diagnóstico por imagem , Cavidades Cranianas/cirurgia , Feminino , Humanos , Imageamento Tridimensional , Masculino , Crânio/diagnóstico por imagem , Crânio/cirurgia , Tomografia Computadorizada por Raios X
18.
Forensic Sci Int Synerg ; 3: 100206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34988414

RESUMO

Lightning fatality identification relies primarily on soft tissue traumatic pattern recognition, prohibiting cause of death identification in cases of full skeletonisation. This study explores the effects of high impulse currents on human bone, simulating lightning-level intensities and characterising electrically induced micro-trauma through conventional thin-section histology and micro-focus X-ray computed tomography (µXCT). An experimental system for high impulse current application was applied to bone extracted from donated cadaveric lower limbs (n = 22). µXCT was undertaken prior to and after current application. Histological sections were subsequently undertaken. µXCT poorly resolved micro-trauma compared to conventional histology which allowed for identification and classification of lightning-specific patterns of micro-trauma. Statistical analyses demonstrated correlation between current intensity, extent and damage typology suggesting a multifaceted mechanism of trauma propagation - a combination of electrically, thermally and pressure induced alterations. This study gives an overview of high impulse current trauma to human bone, providing expanded definitions of associated micro-trauma.

19.
Sci Rep ; 10(1): 10519, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601306

RESUMO

The Nconga Formation of the Mesoarchean (~2.96-2.84 Ga) Mozaan Group of the Pongola Supergroup of southern Africa contains the world's oldest known granular iron formation. Three dimensional reconstructions of the granules using micro-focus X-ray computed tomography reveal that these granules are microstromatolites coated by magnetite and calcite, and can therefore be classified as oncoids. The reconstructions also show damage to the granule coatings caused by sedimentary transport during formation of the granules and eventual deposition as density currents. The detailed, three dimensional morphology of the granules in conjunction with previously published geochemical and isotope data indicate a biogenic origin for iron precipitation around chert granules on the shallow shelf of one of the oldest supracratonic environments on Earth almost three billion years ago. It broadens our understanding of biologically-mediated iron precipitation during the Archean by illustrating that it took place on the shallow marine shelf coevally with deeper water, below-wave base iron precipitation in micritic iron formations.

20.
Appl Radiat Isot ; 61(4): 487-95, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15246388

RESUMO

Neutron radiography can provide images of the internal structure of rocks, through virtue of the differing neutron attenuation characteristics of hydrogen versus other elements commonly found in nature. Thus, pores filled with water, or oil, will attenuate neutrons to a greater extent than the surrounding rock matrix. Similarly, the internal structure of iron ore, which contains mixtures of limonite and goethite, which contain hydrogen in their crystalline lattice, and magnetite (no hydrogen), can also be imaged using neutrons. The ability of the technique to distinguish "effective porosity" versus "total porosity" is derived from the neutron radiographs. Images of two iron ore samples have also been analyzed to demonstrate how both different mineral assemblages and porosity can be determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA